

Original Research Article

Detection of Covid-19: Antigen Test Versus RT-PCR

Krati Varshney¹, Sanjeev Dimri^{2*}¹Associate Professor, Department of Microbiology, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India²Professor & Head, Department of Microbiology, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India

Received: 22-01-2021 / Revised: 19-03-2021 / Accepted: 26-04-2021

Abstract

COVID-19 pandemic has since spread across the globe and is posing a major burden on society. The three important pillars in any country's strategy to tackle the novel coronavirus disease (COVID-19) are trace, test, and isolate. The article aims to evaluate and compare Antigen Test and RT-PCR in terms of accuracy, rapidity, feasibility and economy for diagnosis of COVID-19 disease. A total of 400 naso-pharyngeal swabs were analyzed for antigen test and antigen-negative cases were then subjected to SARS-CoV-2 Real Time RT-PCR (qRT-PCR).

Keywords: COVID-19, RT PCR, Respiratory Syndrome.

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Coronavirus Disease 2019 (COVID-19), caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV), appeared in China for the first time, and subsequently spread worldwide[1]. COVID-19 pandemic has since spread across the globe and is posing a major burden on society. The three important pillars in any country's strategy to tackle the novel coronavirus disease (COVID-19) are trace, test, and isolate. Accurate and Validated testing is extremely important as an early diagnosis of patient helps in tracing and controlling the spread of COVID-19[1]. The World Health Organization (WHO) has raised a global warning and announced the need for a test system for COVID-19- suspected patients (World Health Organization, 2020). SARS-CoV-2 is known to be spread even by infected people who experience only mild symptoms or rare asymptomatic carriers[2]. This testing strategy relies on robust, rapid, and easy-to-perform diagnostic tools that can be used to test large numbers of samples in a short period of time. To date, the recommended diagnostic method for SARS-CoV-2 infection is real-time reverse-transcription PCR (qRT-PCR), which was introduced in January 2020 and is now applied using World Health Organization (WHO) or US Centers for Disease Control and Prevention (CDC) protocols , as well as various commercial assays[3]. Although

Methodology

This is an observational study which was conducted in the Department of Microbiology, Saraswathi Institute of Medical

Sciences, Hapur, UP, India. Four hundred (400) samples from August-2020 onwards were included. Naso-pharyngeal and Oropharyngeal swabs were obtained from suspected cases of COVID-19 disease and collected in the viral transport SARS-CoV-2 antigen test kit (SD Biosensor, Inc. Republic of Korea). Naso-pharyngeal and oropharyngeal swabs were again obtained in Viral transport Media from antigen-negative patients. RT-PCR was performed for SARS-CoV-2 in suspected cases of COVID-19 disease with antigen-negative test results. Diagnostic accuracy of antigen test was determined in comparison to SARS-CoV-2 RT-PCR.

Aim & Objectives

To evaluate and compare antigen test and RT-PCR in terms of accuracy, rapidity, feasibility and economy for diagnosis of COVID-19 disease.

pharyngeal swabs were obtained from suspected cases of COVID-19 disease and collected in the viral transport SARS-CoV-2 antigen test kit (SD Biosensor, Inc. Republic of Korea). Naso-pharyngeal and oropharyngeal swabs were again obtained in Viral transport Media from antigen-negative patients. RT-PCR was performed for SARS-CoV-2 in suspected cases of COVID-19 disease with antigen-negative test results. Diagnostic accuracy of antigen test was determined in comparison to SARS-CoV-2 RT-PCR.

Results

Out of 400 suspected cases, 152 were positive and 248 were negative with antigen card test. Two hundred forty eight (248) antigen-negative tests were again subjected to RT-PCR for further confirmation of results. Out of 248 RT-PCR tests performed, 102 (41.12%) were positive by RT-PCR.

Correspondence*Dr. Sanjeev Dimri**

Professor and Head, Department of Microbiology,
Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India
E-mail:sdimri1966@yahoo.co.in

Table 1: Comparison of methods

Methods	Positive	Negative	Total
RT-PCR	102	146	248
Antigen Test	152	248	400

Table 2 differentiates the two techniques on the basis of technical assistance, equipment required, cost and time.

Table 2:Methods and analysis

Methods	Interpretation of data by expert	Technical Experience	Equipment Required	Finance (Rs)	Time
RT-PCR	Required	Lots of practice	PCR machine, automatic extractor / consumables for manual extraction, biosafety cabinets,-80°C/-20°C refrigerators, micro centrifuges, space for performing PCR	1000-2000	2-5 hrs
Antigen Test	Not required	No practice	No equipment required	250	15 mins

Discussion

Antigen detection test and RT- PCR are currently the most widely used methods for detection of COVID-19. Rapid detection and effective treatment of COVID 19 is a prerequisite in reducing the morbidity and mortality due to the disease. It also helps in prevention of spread of SARS COV -2 infection in community. In the present study, we included 400 patients attending hospital over a period of 6 months for various complaints suggestive of COVID-19. We evaluated and compared the two techniques for diagnosis of COVID-19 disease. The antigen-test was easy to use and provided results in a timely manner. Hence, it has the potential to become an important tool for the early diagnosis of SARS-CoV-2 infection, particularly in situations with limited access to molecular methods[3].Importantly, the sensitivity and specificity of the real-time RT-PCR test is not 100%. All of them behind the laboratory practice standard and personnel skill in the relevant technical and safety procedures explain some of the false-negative results[5].

Conclusion

After analyzing the findings of the present study it was concluded that although RT-PCR is gold standard for diagnosis of COVID 19, the antigen test is also helpful for diagnosis of COVID 19. Our data indicate that combining the antigen test with RT-PCR will significantly improve the diagnostic yield. Antigen test is found to be less time consuming and can be an alternative in a resource poor nation and where RT-PCR services are not available. Further, antigen test is simple to perform & cheap when compared to RT-PCR, and rapid, with results being available in 15 minutes when compared to 4-5 hours for RT- PCR.

Whereas RT-PCR assay permitted, sensitive, and specific detection of SARS-CoV-2 in clinical specimens and provided needed diagnostic support during the recent SARS-CoV-2 outbreak. RT-PCR assay can enhance ability to provide a rapid response in the event of the possible return of SARS-CoV-2, only if proper sampling procedures, good laboratory practice standard, and using high-quality extraction and real-time RT-PCR kit could improve the approach and reduce inaccurate results.

Conflict of Interest: Nil

Source of support:Nil

Acknowledgement

We would like to express our sincerest condolences to the patients and families who suffered from the COVID-19 pandemic. We also greatly appreciate the health care personnel and staff members who worked together to overcome the COVID-19 pandemic. Finally, we would like to thank Mr.Asif& other technicians involved in sample collection and processing. We would like to thank management of the Institute and thanks to administration of Hapur District for providing free antigen testing kits.

References

1. Robert Kubin et al. Molecular and Serological Tests for COVID-19:A Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics.2020; 10:434.
2. Y Hirotsu et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients.International Journal of Infectious Diseases. 2020; 99:397–402.
3. Porte et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples .International Journal of Infectious Diseases. 2020;99:328-333.
4. Ko J-H et al. Clinical application of rapid diagnostic test kit for SARS-CoV-2 antibodies into the field of patient care. Journal of Microbiology.Immunology and Infection.2021;54(1):97–100.
5. Alireza Tahamtana et al. Real-time RT-PCR in COVID-19 detection:issues affecting the results.Expert review of molecular diagnostics.2020;20(5):1-5.