

Original Research Article

Study of sociodemographic and clinical factors affecting duration of stay of Child and Adolescent patients admitted in Child and Adolescents Psychiatry unit of a tertiary care center in India.

Sangeeta Hatila¹, Mahak Aggarwal², Aditya Sharma², Gunjan Solanki^{3*}

¹Senior Resident, Department of Psychiatry, SMS Medical College, Jaipur, Rajasthan, India

²Junior Resident, Department of Psychiatry, SMS Medical College, Jaipur, Rajasthan, India

³Associate Professor, Department of Psychiatry, SMS Medical College, Jaipur, Rajasthan, India

Received: 15-04-2021 / Revised: 19-05-2021 / Accepted: 27-06-2021

Abstract

Background: Need is to identify psychiatric illnesses at the earliest and to effectively manage them not only because they have significant impact on the long term development of the child or adolescent but also because first onset of mental disorders usually occurs before 18 years of age. Child and adolescent specialized psychiatric units are now gradually on increase improving quality of care particularly inpatient care. The present study gains insight about inpatient admissions (Hospitalization) of children and adolescents i.e. factors affecting duration of stay in inpatient wards. **Methods:** Our sample included past treatment record of all patients who were treated as inpatients in childhood and adolescent unit. We carried out a retrospective search of past records for socio demographic profile, diagnosis, mode of discharge, Duration of stay, Family History of psychiatric illness and CGAS scores at the time of admission of admitted from the July 2017 to June 2018. **Results:** Mean age of subjects was 14.2 years. 56.9% were male, rest were female. 84.7% children were from Hindu families. Most of the patients (70.8%) were from rural background. Bipolar affective disorder (27.5%) was found the most common diagnosis in childhood and adolescent unit. Only factor found to be significantly associated with duration was CGAS score at the time of admission. **Conclusion:** Level of functioning at the time of admission may significantly predict duration of admission in psychiatric ward which may help clinician to effectively plan management although it needs to be individualized in hospitalized child and adolescents.

Keywords: Child and adolescent, inpatient, duration of stay

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Superficial fungal infections are the most common skin diseases affecting millions of people throughout the world. The majority of these infections are caused by dermatophytes[1]. Dermatophytes are a group of closely related keratinophilic fungi, all of which produce keratinase that can invade the stratum corneum of skin or other keratinized tissues derived from epidermis such as hair and nails[2,3]. Dermatophytosis is an infection produced by a dermatophytic fungus in the keratinized tissues - hair, nails and stratum corneum of skin [1]. Dermatophytosis is generally called "tinea" or "ringworm". Tinea is a Latin word for 'larva of small insect'. The common clinical term given to dermatophytosis is designated by appending Latin word to an anatomical site at which infection is present to the term tinea[4]. Trichophyton rubrum and Trichophyton tonsurans are two common dermatophytes. T. rubrum are found in face, trunk, beard area, nails, feet and groin area infection. T. tonsurans are found in endothrix and black dot infection. These two species are usually transmitted from

person to person.

Another common dermatophyte is Microsporumcanis, which is transmitted from animals such as cats and dogs to humans [5,6]. Dermatophytes like to live on moist areas of the skin, such as places where there are skin folds. The dermatophyte infection that affects the scalp and hair is known as tineacapitis. It is especially common among school-aged children. For reasons that are not well understood, tineacapitis does not usually occur after puberty. In recent times few cases of subcutaneous and deep fungal infections have been reported to be caused by dermatophytes. It has been noted that dermatophyte infections are more common in adolescents and adults[7]. There is scanty of data about the prevalence of dermatophytes in North Indian Population, hence, the present study was planned to study the prevalence of dermatophytes infection in different patients and to find the etiological agents of dermatophytes.

Materials and Method

This prospective study was conducted at Department of Microbiology at Patna Medical College and Hospital, Patna. The study was approved by the institutional ethical and research committee. The study was conducted from September 2020 to May 2021. An informed and written consent was taken from all the participating subjects prior to the commencement of the study. The Study was conducted on the patients attending dermatology OPD of our institution. The study samples consisted of skin scrapping, nail, hair and hair roots received to the laboratory. Identification & isolation of Dermatophytes specimens on the basis of KOH preparation, SDA and DTM.

Statistical analysis

*Correspondence

Dr. Gunjan Solanki

Associate Professor, Department of Psychiatry, SMS Medical College, Jaipur, Rajasthan, India

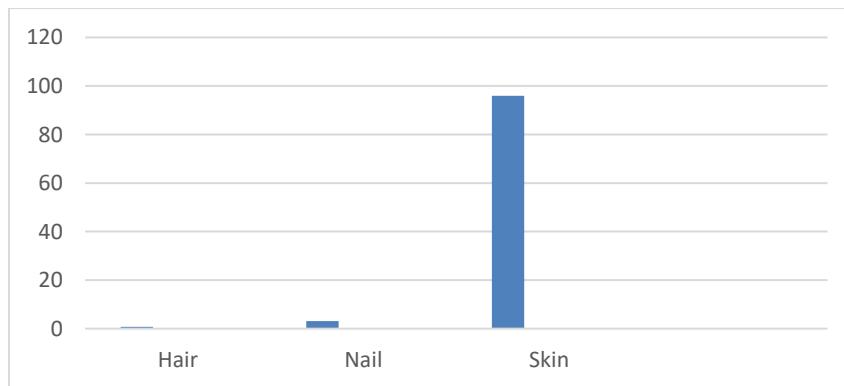
E-mail: drgunjanr@gmail.com

Descriptive statistics were analysed and presented. The Chi-square test was used for comparisons. The predictive values of KOH such as sensitivity, specificity, positive & negative predictive values (PPV &NPV) and accuracy was calculated. Analysis was carried out on SPSS 16.0 version (Chicago, Inc., USA).

Results

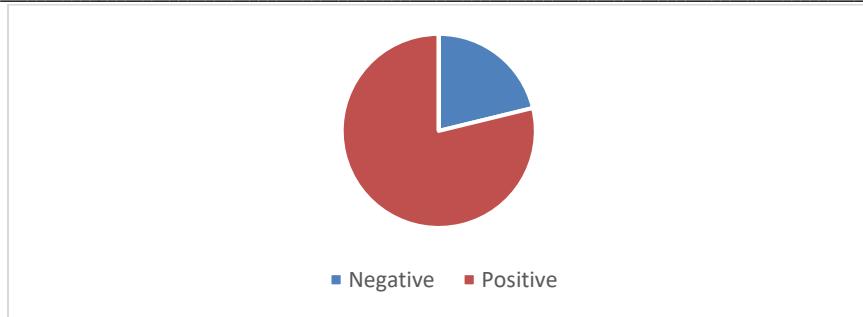
More than one third of the patients were between 21- 30 (37.9%) years followed by ≤ 20 (21.2%), 31-40 (18.9%), 41-50 (12.7%), 51-60 (6.8%) and >60 (2.5%) years. Majority of the patients were males (81.4%). More than one third of the patients were manual worker (40.1%). More than half of the patients belonged to lower middle class (52%) [Table 1].

Table 1: Distribution of demographic profile of patients.


Demographic profile	No. (n=354)	%
Age in years		
≤ 20	75	21.2
21-30	134	37.9
31-40	67	18.9
41-50	45	12.7
51-60	24	6.8
>60	9	2.5
Mean \pm SD (Range)	31.97 ± 12.92 (19-75)	
Gender		
Male	288	81.4
Female	66	18.6
Occupation		
Manual worker	142	40.1
House wife	41	11.6
Student	112	31.6
Professional	26	7.3
Others	33	9.3
Socio-economic status (SES)		
Lower class	122	34.5
Lower middle class	184	52.0
Middle class	39	11.0
Upper middle class	9	2.5

Groin lesion was in 59.6% and abdomen was in 9.6% [Table 2].

Table 2: Distribution of patients according to type of lesion.


Type of lesion	No. (n=354)	%
Groin lesion	211	59.6
Back	5	1.4
Finger	6	1.7
Thumb	5	1.4
Abdomen	34	9.6
Legs	40	11.3
Hands	44	12.4
Scalp	3	0.8
Generalized	24	6.8

Majority of the specimen were from skin (96%) followed by nail (3.1%) and hair (0.9%) [Figure 1].

Fig 1: Distribution of patients according to site of specimen

The Dermatophytoses infection was found to be 78.8% (279/354) [Figure 2].

Fig 2: Distribution of patients according to Dermatophytoses infection

Dermatophytoses infection was found to be higher in the age group of 41-50 years (84.4%) and was least in the age group of >60 (55.6%). The difference was found to be statistically insignificant ($p>0.05$). Dermatophytoses infection was found to be higher in males (79.9%) than females (74.2%). The difference was found to be statistically insignificant ($p>0.05$). Dermatophytoses infection was found to be insignificantly ($p>0.05$) higher among middle class (87.2%) than lower class (79.5%), lower middle class (77.2%) and

upper middle class (66.7%). Dermatophytoses infection was found to be insignificantly ($p>0.05$) higher among manual worker (81.7%) than house wife (80.5%), professional (76.9%), student (76.8%) and others (72.7%). The Dermatophytoses infection was found to be higher in skin sample (79.7%) than nail (63.5%) and hair (33.3%). The difference was found to be statistically insignificant ($p>0.05$) [Table 3].

Table 3: Dermatophytoses infection according to demographic profile

Demographic profile	No. of patients	With Dermatophytoses		Without Dermatophytoses		p-value1
		No.	%	No.	%	
Age in years						
≤20	75	60	80.0	15	20.0	0.54
21-30	134	105	78.4	29	21.6	
31-40	67	53	79.1	14	20.9	
41-50	45	38	84.4	7	15.6	
51-60	24	18	75.0	6	25.0	
>60	9	5	55.6	4	44.4	
Gender						
Male	288	230	79.9	58	20.1	0.31
Female	66	49	74.2	17	25.8	
SES						
Lower class	122	97	79.5	25	20.5	
Lower middle class	184	142	77.2	42	22.8	
Middle class	39	34	87.2	5	12.8	0.43
Upper middle class	9	6	66.7	3	33.3	
Occupation						
Manual worker	142	116	81.7	26	18.3	
House wife	41	33	80.5	8	19.5	
Student	112	86	76.8	26	23.2	0.76
Professional	26	20	76.9	6	23.1	
Others	33	24	72.7	9	27.3	
Type of specimen						
Hair	3	1	33.3	2	66.7	
Nail	11	7	63.6	4	36.4	0.06
Skin	340	271	79.7	69	20.3	

SDA and DTM were positive in 79.7% [Table 4]. Trichophyton Rubrum (57.4%) was found to be most common organism and Trichophyton Mentagrophytes (24.1%) was the second most

common organism. The percentage of other organism was less than 10% [Table 5].

Table 4: Distribution of patients according to culture

Culture	No. (n=354)	%
Sabouraud's Dextrose Agar (SDA)		
Positive	282	79.7
Negative	72	20.3
Dermatophyte Test Medium (DTM)		
Positive	282	79.7
Negative	72	20.3

Table 5: Distribution of patients according to isolates

Organism	No. (n=282)	%
Epidermophyton Floccosum	16	5.7
Microsporumaudouini	6	2.1
Microsporumcanis	6	2.1
Microsporumgypseum	9	3.2
TrichophytonMentagrophytes	68	24.1
TrichophytonRubrum	162	57.4
TrichophytonSchaenleinii	1	0.4
TrichophytonTonsurans	12	4.3
TrichophytonViolaceum	2	0.7

The sensitivity of KOH was 84.4% and specificity was 43.1% with PPV being 85.3%. In 67.2% specimens, both DTM and KOH were found to be positive [Table 5].

Table 5: Predictive value of KOH test

	DTM test		
	Positive	Negative	Total
KOH test	Positive 238 (67.2%)	41(11.6%)	279 (78.8%)
	Negative 44 (12.4%)	31 (8.8%)	75 (21.2%)
	Total 282 (79.7%)	72 (20.3%)	354 (100%)
Sensitivity	84.4		
Specificity	43.1		
PPV	85.3		
NPV	41.3		
Accuracy	76.0		

Discussion

Dermatophytes are superficial infections of keratinised tissue, the skin, hair and nails, caused by dermatophytes. The prevalence of dermatophytosis is determined by environmental conditions, personal hygiene and individuals susceptibility. The variation in clinical presentation is related to the species of the fungus, size of the inoculum, the involved sites, and the immune status of the host. The higher incidence of superficial mycoses is seen in month of July to September due to rainy season & humid atmosphere which is also correlating well with other studies[8-10]. In the present study, 354 clinically suspected cases of dermatophytes attending Skin and Venereal disease outpatient Department of our institute were studied. In the present study, most common age group affected was 41-50 years with 84.4% followed by ≤ 20 years (80%), 31-40 years (79.1%). Overall, most of the cases of dermatophytes are in 21-60 years age group while it is least common at extremes of age. Most of the studies from different parts of India reported commonest age group affected to be 21-30 years[11-15]. The present study was correlated with other studies done by Patwardhan and Dave (1999) Aurangabad, Peerapur et al. (2004) at Bijapur, Sen and Rasul. (2006) at Assam, Kumar et al. (2014) at Mangalore, Najotra et al. (2015) at Jammu and Kashmir.

High infection of dermatophytosis in this age group (21-60 years) might be due to increased physical activity, high chances of exposure and hormonal factors. In the present study, males (79.9%) were more affected than females (74.2%). Male to female ratio was 4.7:1. The higher percentage of males might be due to that females are much lower enrolled in this study.

The present study was correlated with studies done by Sen et al (2006) at Assam, Bindu et al (2002) at Calicut, Patwardhan et al. (1999) Aurangabad, Singh and Beena (2003) at Baroda all of which reported male preponderance.

Male preponderance might be due to more involvement of them in physical and outdoor activities thereby increasing their chance of exposure[16-18]. Male: Female ratio of 4.7:1 (higher as compared to other studies), may be due to increasing involvement of females now a days in outdoor activities and increasing health awareness among them. In the present study, Dermatophytes infection was found to be insignificantly ($p>0.05$) higher among middle class (87.2%) than

lower class (79.5%), lower middle class (77.2%) and upper middle class (66.7%). This was in agreement to the study done by Sarada et al (2015) at Vijayawada which states that 73.6% cases are from low socio-economic status[18]. This may be due to poor hygienic conditions, overcrowding, sharing of linen, towels etc., poor nutrition. These all factors are frequently associated with lower economic classes of society[19]. Dermatophytes infection was found to be insignificantly ($p>0.05$) higher among manual worker (81.7%) than house wife (80.5%), professional (76.9%), student (76.8%) and others (72.7%). This was in agreement to the study done by Veer et al. (2007). This may be due to more involvement of manual workers in physical activities and thereby increased chance of exposure (Chander, 2009).

Direct microscopy, although false negative in 5 to 15% of cases in ordinary practice (Rippon, 1988), is a highly efficient screening technique. Scrapings and hairs may be mounted for direct examination in 25% KOH or NaOH mixed with 5% glycerol, heated (e.g., for 1 h at 51 to 54°C) to emulsify lipids, and examined under 3400 magnification for fungal structures. Another formulation is 20% KOH-36% dimethyl sulfoxide ((Rippon, 1988)), and two techniques for fluorescence microscopy, the calcofluor white technique and the Congo red technique, may be used[21-25].

In the present study, out of 354 clinically suspected cases of dermatophytes, fungal elements was demonstrated in 67.2% were positive by both microscopy and DTH, 11.6% were positive by microscopy but were negative by DTH, 12.4 cases were negative by microscopy but DTH positive, 8.8% were negative both by microscopy and DTH. This was comparable with the other studies done by Singh et al (2003) Baroda, Yadav et al. (2013), Navi Mumbai[23].

Considering DTH as gold standard sensitivity of KOH was found to be 84.4% and specificity was 43.1%, Positive predictive value (PPV) was 85.3% and Negative predictive value (NPV) was 41.3%. Sensitivity of direct microscopy was comparable to the study done by Gupta et al (2014). In this study, as sensitivity of direct microscopy was high it appears to be good screening test for diagnosing and starting early treatment in suspected cases of dermatophytes as DTH report often take time.

Culture is generally considered gold standard for diagnosis of dermatophytes. But culture also have draw back of high false negativity as suggested by various[24,25]. This high false negativity can be due to presence of nonviable hyphae in specimens, insufficient and improper collection of specimen. But as all the sample collection was done by me, last two variables insufficient and improper collection of specimen was largely addressed in this study. In the present study, *TrichophytonRubrum* (57.4%) was found to be most common organism and *TrichophytonMentagrophytes* (24.1%) was the second most common organism. The percentage of other organism was less than 10%. This was comparable to the findings of studies done by Najotra et al. (2015) at J&K (*T. rubrum*: 41.8%, *T. mentagrophytes*: 22.4%), Ranganathan et al. (1995) at Madras (*T. rubrum*: 52.2%, *T. mentagrophytes*: 29.35%). In contrast, Karmakar et al. (1995) Rajasthan reported *T. violaceum* (55.76%) as most common isolate followed by *T. rubrum* (42.3%). Bhatia and Sharma (2014) at Himachal Pradesh reported *T. mentagrophytes* (63.5%) as most common isolate followed by *T. rubrum* (34.6%)[26,27]. This shows wide variation in isolation of various dermatophyte species across different geographical area.

Conclusion

Dermatophytes are quite common in India because of hot and humid climate along with poor hygienic conditions, both playing important role in the growth of these fungi. There is varying difference in isolation of different species of dermatophytes from different regions of India.

Bibliography

1. Rippon JW. Medical mycology- The pathogenic fungi and the pathogenic actinomycetes. 3rd edition. Philadelphia: WB Saunders company, 1988.
2. Hay RJ. Dermatophytosis and other superficial mycoses. In: Mandell, Douglas, and Bennett's Principles and practice of infectious diseases.
3. Mandell GL, Bennett JE, Dolin R. (eds) 8th edition Vol 2. Philadelphia: Churchill Livingstone Elsevier, 2010, 3345-63p.
4. Chander J. Textbook of medical mycology. 3r edition. New Delhi: Mehta Publishers, 2009.
5. Washington C Winn, Stephen D Allen, William M Janda, Koneman W Elmer, Gary W Procop, Paul C Schreckenberger, Gail L Woods. Identification of dermatophytes. Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th edition. Baltimore: Lippincott Williams & Wilkins, 2006, 1187-1195.
6. Cheesbrough Monica. Dermatophytes. District laboratory practice in tropical countries. Part 2, 2nd edition. United Kingdom: Cambridge University Press; 2005, 234- 238.
7. Parija SC. Mycology. Textbook of Practical Microbiology, 1st edition. New Delhi, India: AphAhuja Publishing House, 2011, 211-237.
8. Milne LJR, Fungi. In; Mackie and McCartney, Practical Medical Microbiology. Collee JG, Fraser AG, Marmion BP, Simmons A (eds.) 14th edition New Delhi: Elsevier, 2011, 695-717.
9. Ansari HQF, Patel MB, Juwairriyyah AW. Epidemiology and In-Vitro Antifungal Susceptibility Testing of Dermatophytes; Int J Adv Res. 2014;2:553-560.
10. Mayr A. Infections which humans in the household transmit to dogs and cats. Zentralbl. Bakteriol. Mikrobiol. Hyg. Ser. B. 1989;187:508-526.
11. Patwardhan N, Dave R. Dermatomycosis in and around Aurangabad. Indian J PatholMicrobiol. 1999; 42:455-462.
12. Peerapur BV, Inamdar AC, Pushpa PV, Srikanth B. Clinicomycological Study of Dermatophytosis in Bijapur. Indian J Med Microbiol. 2004; 22(4):273-274.
13. Sen SS, Rasul ES. Dermatophytosis in Assam. Indian J Med Microbiol. 2006;24:77-8.
14. Kumar S, Mallya PS, Kumari P. Clinico-Mycological study of dermatophytosis in a tertiary care hospital. Int J Sci Study. 2014;1(6):27-32.
15. Najotra DK, Choudhary V, Sahni B, Choudhary A. Clinico-epidemiological profile of dermatophytosis in district of Samba: a cross sectional study from the state of Jammu and Kashmir. India. Med Sci. 2015; 3(1):183-9.
16. Bindu V. Clinico-mycological study of dermatophytosis in Calicut. Indian J DermatolVenerolLeprol. 2002; 68:259-61.
17. Singh S, Beena PM. Profile of dermatophyte infections in Baroda. Indian J DermatolVenerolLeprol. 2003; 69:281-3.
18. Sarada D, Kumari PR. A study of Dermatomycoses. International journal of advanced research. 2015; 3(1):582-8.
19. Gupta S, Agrawal P, Rajawat R, Gupta S. Prevalence of dermatophytic infection and determining sensitivity of diagnostic procedures. Int J Pharm Pharm Sci. 2014; 6(3):35-8.
20. Veer P, Patwardhan NS, Damle AS. Study of onychomycosis: Prevailing fungi and pattern of infection. Indian J Med Microbiol. 2007; 25:53-6.
21. Robinson BE, PadhyeAA. Collection, transport and processing of clinical specimens. In B. B. Wentworth (ed.), Diagnostic procedures for mycotic and parasitic infections. American Public Health Association, Washington, D.C 1988, 11-32p.
22. Slifkin M, Cumbie R. Congo red as a fluorochrome for the rapid detection of fungi. J. Clin. Microbiol. 1998; 26:827-830.
23. Yadav A, Urhekar AD, Mane V, Danu MS, Goel N, Ajit KG. Optimization and isolation of dermatophytes from clinical samples and in vitro antifungal susceptibility testing by disc diffusion method. RRJMB. 2013; 2(3):19-34.
24. Lacaz CS, Porto E, Martins JEC, Heins-Vaccari EM, Melo TN. Tratado de MicologiaMédica, 9th ed. Prefácio: Bertrand Dupont. São Paulo: Sarvier. 2002; 44(5):297-298.
25. Sidirm J. Micologiamédica à luz de autorescontemporâneos. Rio de Janeiro: Guanabara Koogan, 2004.
26. Karmakar S, Kalla G, Joshi KR. Dermatophytosis in a desert district of Western Rajasthan. Indian J Dermatol Venereol Leprol. 1995; 61:280-3.
27. Bhatia VK, Sharma PC. Epidemiological studies on Dermatophytosis in human patients in Himachal Pradesh. India. Springer Plus. 2014;3:134-38.

Conflict of Interest: Nil

Source of support:Nil