

## Original Research Article

## Comparison of prophylactic ephedrine with crystalloid preloading for prevention of hypotension due to spinal anaesthesia for caesarian sections

Sahaja Gunda<sup>1</sup>, Giridhar Janampet Bekkam<sup>2\*</sup>

<sup>1</sup>Assistant Professor of Anaesthesia, Nizamabad Govt. Medical College and Hospital, Nizamabad, Telangana, India

<sup>2</sup>Assistant Professor of Anaesthesia, Panimalar Medical College Hospital and Research Institute, Chennai, India

Received: 11-09-2021 / Revised: 13-10-2021 / Accepted: 20-11-2021

### Abstract

**Background:** Hypotension is the usual complication of spinal anaesthesia in cesarean section. The present study was done to compare the efficiency of Ephedrine infusion and crystalloid preloading for the prevention of postspinal hypotension. **Methodology:** This study was conducted on sixty patients who were randomly divided into two groups of 30 patients each. Group I (n = 30) received 15 ml/kg of lactated Ringer's solution 10 min before spinal anaesthesia, and Group-II (n = 30) received prophylactic 5 mg ephedrine first and second minute and 1 mg every minute until 15 min after the spinal anaesthesia. Heart rate and systolic blood pressure were measured at 1min after spinal anaesthesia, and then every 3 minutes for the first 30 minutes then every 5 minutes for the next 30 minutes and then after 30 minutes. O<sub>2</sub> saturation was recorded every 30 minutes. **Observations and Results:** incidence of Hypotension was significantly higher in the group I (40%) compared to the group II (20%) (p-value 0.01). There is a significant fall in SBP in a fluid group compared to the Ephedrine group. Significant increase in the incidence of nausea and vomiting was observed in the group I (17%) when compared to the group II (3%), (p-value 0.02) and non significant increase in the incidence of Bradycardia was observed in group I (20%) when compared to group II (3%), (p-value 0.2). **Conclusion:** IV infusion of ephedrine was found to be very effective compared to crystalloid preloading in the prevention of hypotension in patients receiving spinal anaesthesia for cesarean section.

**Keywords:** Ephedrine infusion, preloading, hypotension, spinal anaesthesia.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

### Introduction

In patients undergoing cesarean delivery, Spinal anesthesia gives a quick, rigorous, and symmetrical sensory and motor block of high quality[1,2]. Spinal anesthesia is usually given in cesarean section, but a higher incidence of hypotension is one of the disadvantage of this procedure, as the incidence varies from 70 to 80%[3]. spinal anaesthesia induced Hypotension in mother can cause placental hypoperfusion and fetal asphyxia[4].

Many procedures were attempted for reducing the incidence of Hypotension but were not successful in reducing[5]. Ephedrine which is a vasopressor may be considered as an effective alternative for reducing the incidence of Hypotension[6] as it acts directly by stimulating alpha and beta adrenergic receptors and indirectly by releasing norepinephrine from nerve endings in the autonomous nervous system[7].

The present study was done to compare the efficacy of ephedrine infusion versus crystalloid preloading in reducing the incidence of hypotension during spinal anaesthesia for cesarean section.

### Materials and methods

This prospective randomized comparative study was done at government medical college and general hospital, Nizamabad from June 2020 to December 2020 on 60 healthy pregnant female patients with normal pregnancies planned for elective Caesarean section.

\*Correspondence

**Dr. Giridhar Janampet Bekkam**

Assistant Professor of Anaesthesia, Panimalar Medical College Hospital and Research Institute, Chennai, India.

E-mail: [giridharbj@gmail.com](mailto:giridharbj@gmail.com)

Approval from the institutional ethics committee was taken and from each patient informed written consent was taken. Patients were divided randomly into two equal groups (Ephedrine group and fluid group) of 30 patients each (by closed envelope method) before moved to the operating theatre. Continuous monitoring with electrocardiography, non-invasive blood pressure, heart rate and pulse oximetry was started once patient enters into the operation room. Baseline systolic blood pressure, heart rate, and arterial oxygen saturation were recorded. By using (18G) peripheral cannula a suitable peripheral vein was cannulated.

With the patient in sitting position, spinal anaesthesia was done at interspace L3-L4 with a 22 gauge spinal needle. All the patients received the same amount of local anesthetic 2 ml of 0.5% heavy Bupivacaine + fentanyl (25 µg). Then the patient was placed in the left lateral position by using a wedge under the right hip with slight elevation of the head; oxygen nasal cannula was used 4 litres/minute. Heart rate and systolic blood pressure were measured non invasively at 1min after spinal anesthesia, and then every 3 minutes for the first 30 minutes then every 5 minutes for 30 minutes then after 30 minutes. O<sub>2</sub> saturation was recorded by pulse oximetry continuously and recorded every 30 minutes.

Oxytocin was administered after fetus delivery (10 units in 500 ml lactated Ringer) in both groups. Nausea and vomiting were also recorded. Nausea and vomiting treated with 10 mg metoclopramide. Postoperatively, all patients in the two groups were assessed for Heart rate, Blood pressure noninvasively and oxygen saturation and were recorded postoperatively after 30 minutes.

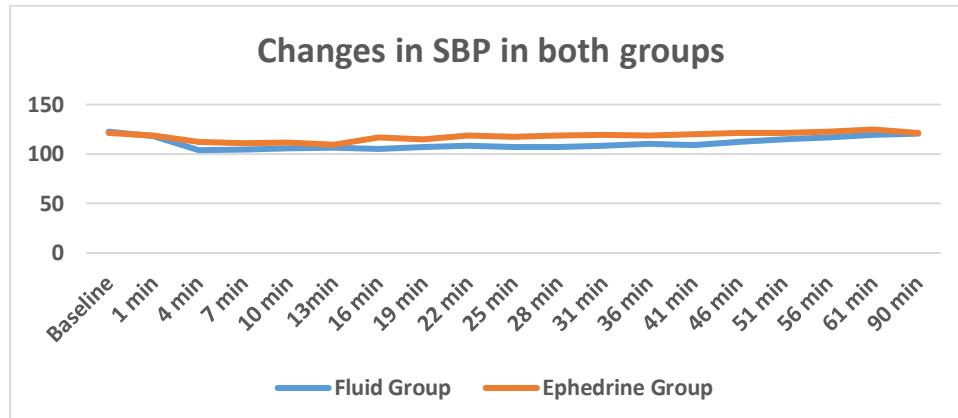
Data was analyzed using a statistical package of social studies SPSS version 16. Continuous variables were presented as mean ± standard deviation and categorical variables were presented as frequencies and percentages. Analysis of data was done using Student t-test & Chi-square test. P value ≤ 0.05 was considered statistically significant.

**Results**

sixty patients were randomly allocated into group I (fluid group) and group II (ephedrine group) of 30 patients each. Demographic Data

including age, BMI were collected and there was no significant differences between the two groups (**Table 1**).

**Table 1: Demographic data of patients**


|     | <b>Group 1 (fluid)</b> | <b>Group 2 (Ephedrine)</b> | <b>P-value</b> |
|-----|------------------------|----------------------------|----------------|
| Age | 31.03±5.75             | 30.84±4.08                 | 0.3            |
| BMI | 34.5 ± 1.53            | 35.1 ± 1.64                | 0.4            |

In relation to systolic blood pressure, higher SBP was seen in Group-II (Ephedrine) when compared to Group-I(Fluid); In group-I there was significant fall in SBP from 22 minutes. (**Table 2**).

**Table 2: Systolic BP (mm hg)**

|          | <b>Group-I (fluid)</b> | <b>Group-II (ephedrine)</b> | <b>P value</b> |
|----------|------------------------|-----------------------------|----------------|
| Baseline | 122.6 ± 7.8            | 121.1 ± 9.9                 | <b>0.09</b>    |
| 1 min    | 118.3 ± 12.3           | 118.4 ± 12.3                | <b>0.48</b>    |
| 4 min    | 103.9 ± 8.8            | 112.2 ± 15.5                | <b>0.06</b>    |
| 7 min    | 104.6 ± 12.8           | 111.1 ± 13.7                | <b>0.4</b>     |
| 10 min   | 105.7 ± 10.1           | 111.4 ± 13.2                | <b>0.4</b>     |
| 13min    | 106.7 ± 6.6            | 109.4 ± 12.0                | <b>0.3</b>     |
| 16 min   | 105.4 ± 10.2           | 116.6 ± 10.9                | <b>0.08</b>    |
| 19 min   | 106.9 ± 10.9           | 114.7 ± 13.5                | <b>0.3</b>     |
| 22 min   | 108.1 ± 11.8           | 118.8 ± 10.8                | <b>0.04*</b>   |
| 25 min   | 107.3 ± 8.6            | 117.4 ± 9.7                 | <b>0.03*</b>   |
| 28 min   | 107.3 ± 12.5           | 118.5 ± 11.9                | <b>0.02*</b>   |
| 31 min   | 108.3 ± 8.3            | 119.1 ± 9.7                 | <b>0.01*</b>   |
| 36 min   | 110.4 ± 9.7            | 119.2 ± 9                   | <b>0.02*</b>   |
| 41 min   | 109.1 ± 6.1            | 120.2 ± 6.0                 | <b>0.001*</b>  |
| 46 min   | 112.4 ± 6.8            | 121.4 ± 9.8                 | <b>0.001*</b>  |
| 51 min   | 115.0 ± 5.4            | 121.2 ± 6.7                 | <b>0.001*</b>  |
| 56 min   | 117.1 ± 9              | 122.7 ± 6.2                 | <b>0.001*</b>  |
| 61 min   | 119.2 ± 6.2            | 124.8 ± 5.2                 | <b>0.001*</b>  |
| 90 min   | 120.5 ± 6.5            | 121.4 ± 7.59                | <b>0.001*</b>  |

Data represented as Mean ± SD, \* = statistically significant (P<0.05)

**Fig 1: SBP changes in both groups**

Regarding Heart rate, it was higher in group-II when compared to group-I which was not statistically significant. Table 3

**Table 3: Heart rate**

|          | <b>Group-I (fluid)</b> | <b>Group-II (Ephedrine)</b> | <b>P value</b> |
|----------|------------------------|-----------------------------|----------------|
| Baseline | 86.5 ± 6.7             | 91.3 ± 8.8                  | <b>0.08</b>    |
| 1 min    | 89.5 ± 7.2             | 94.6 ± 10.4                 | <b>0.01*</b>   |
| 4 min    | 89.7 ± 11.6            | 93.2 ± 12.1                 | <b>0.1</b>     |
| 7 min    | 87.7 ± 10.5            | 94.2 ± 8.8                  | <b>0.7</b>     |
| 10 min   | 86.8 ± 10.3            | 92.3 ± 11.1                 | <b>0.06</b>    |
| 13min    | 85.7 ± 8.4             | 93.2 ± 10.1                 | <b>0.4</b>     |
| 16 min   | 85.9 ± 9.3             | 91.4 ± 8.5                  | <b>0.08</b>    |
| 19 min   | 84.6 ± 11.7            | 91.2 ± 10.5                 | <b>0.2</b>     |
| 22 min   | 83.5 ± 11.2            | 90.8 ± 10.4                 | <b>0.5</b>     |
| 25 min   | 82.7 ± 7.4             | 89.7 ± 8.8                  | <b>0.1</b>     |
| 28 min   | 81.8 ± 10.4            | 89.5 ± 10.8                 | <b>0.3</b>     |

|        |            |            |            |
|--------|------------|------------|------------|
| 31 min | 81.6 ± 7.2 | 89.4 ± 8.8 | <b>0.1</b> |
| 36 min | 80.8 ± 8.8 | 88.5 ± 8.1 | <b>0.7</b> |
| 41 min | 79.6 ± 7.2 | 87.5 ± 8.1 | <b>0.8</b> |
| 46 min | 79.4 ± 8.3 | 87.2 ± 7.6 | <b>0.9</b> |
| 51 min | 78.6 ± 4.4 | 87.1 ± 7.8 | <b>0.2</b> |
| 56 min | 77.6 ± 8.1 | 86.8 ± 7.3 | <b>0.5</b> |
| 61 min | 78.4 ± 7.3 | 86.3 ± 7.6 | <b>0.6</b> |
| 90 min | 77.8 ± 8.6 | 85.2 ± 6.5 | <b>0.7</b> |

\*statistically significant (P<0.05)

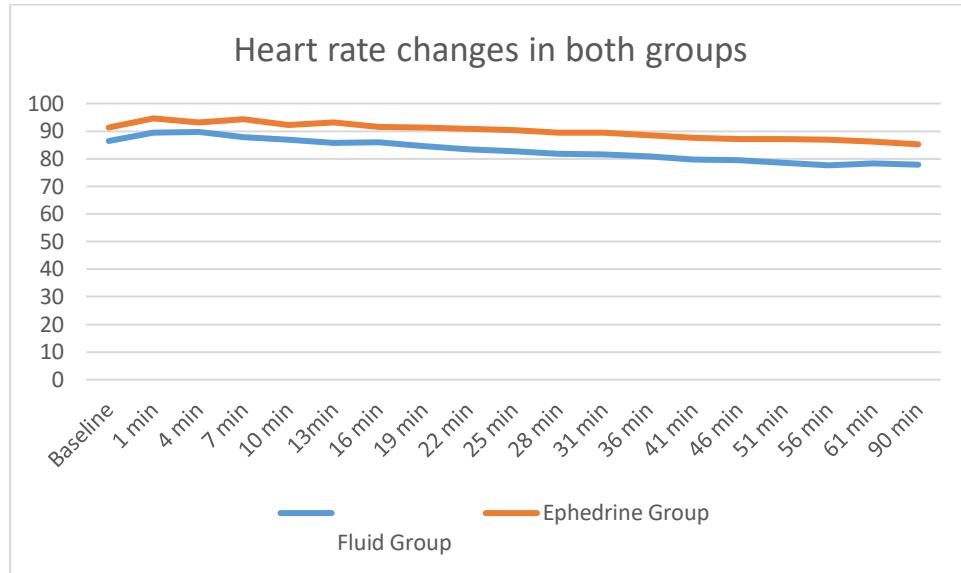



Fig 2: Heart rate changes in both groups

oxygen saturation was not statistically significant between the two groups (Table 4).

| Table 4. Oxygen saturation.    |                 |                      |             |
|--------------------------------|-----------------|----------------------|-------------|
|                                | Group I (fluid) | Group II (Ephedrine) | P value     |
| Baseline                       | 97.4 ± 0.8      | 98.2 ± 0.7           | <b>0.34</b> |
| 30 min                         | 96.8 ± 0.5      | 99.5 ± 0.4           | <b>0.12</b> |
| 60 min                         | 98.5 ± 0.4      | 98.7 ± 0.4           | <b>0.23</b> |
| 90 min (Post)                  | 97.8 ± 0.5      | 98.9 ± 0.6           | <b>0.14</b> |
| Data represented as Mean ± SD. |                 |                      |             |

In relation to the incidence of complications, the incidence of hypotension was significantly higher in group I (12/30) when compared to group II (6/30) with P value 0.01. Significant increase in the incidence of nausea and vomiting was observed in the group I (17%) when compared to the group II (3%), (p-value 0.02) and non significant increase in the incidence of Bradycardia was observed in group I (20%) when compared to group II (3%), (p-value 0.2). (Table 5).

Table 5: Incidence of Complications

|                     | Group 1 (n=30) (fluid) | Group 2 (n=30) (Ephedrine) | P-Value |
|---------------------|------------------------|----------------------------|---------|
| Hypotension         | 12 (40%)               | 6 (20%)                    | 0.01*   |
| Nausea and vomiting | 5 (17%)                | 1 (3%)                     | 0.02 *  |
| Bradycardia         | 6 (20%)                | 1 (3%)                     | 0.2     |

\*statistically significant (P<0.05)

#### Discussion

Hypotension induced by Spinal anaesthesia is treated physiologically by increasing the venous return which increases cardiac output. Incidence of Hypotension was not abolished by Keeping the head in down position or elevating the leg or wrapping the leg with crep bandage[8,9]. On the other hand great volumes of Crystalloids are required to decrease the incidence of hypotension[10]. These large volumes have detrimental effects like: Increased central venous pressure[11], blood dilution leading to decrease in oxygen carrying capacity[12], release of atrial natriuretic peptide initiating diuresis, thereby attenuating the effect of volume load on blood pressure[13]. Because of above reasons, spinal anaesthesia induced hypotension can be prevented by prophylactic administration of a pharmacologic

agent[14-16]. Compared to  $\alpha$ -or  $\beta$ -adrenergic agonist, mixed adrenergic agonist such as Ephedrine more ideally corrects the non cardiac circulatory sequelae of spinal anaesthesia[17]. Studies shown that episodes of hypotension can be prevented by prophylactic bolus or infusions of IV Ephedrine without unwanted side effects[18-20]. In the present study, effectiveness of fluid preloading with 15 ml/Kg lactated Ringer ( group I) were compared with prophylactic IV ephedrine infusion without fluid preload (group II) for prevention of hypotension after spinal anesthesia for cesarean section. We found significant increase of SBP in ephedrine group when compared to the fluid group and significant increased incidence of Hypotension, nausea and vomiting in fluid group compared to Ephedrine group.

Bhovi *et al.*[21] in their study observed that the incidence of hypotension was significantly more in the fluid group compared to ephedrine group.

Gajraj *et al.*[22] in their study found significant incidence of hypotension in the crystalloid group compared to the infusion group and non significant difference in the incidence of nausea and vomiting among the two groups.

### Conclusion

IV infusion of ephedrine was found to be very effective compared to crystalloid preloading in the prevention of hypotension in patients receiving spinal anaesthesia for cesarean section.

### References

1. Park GE, Hauch MA, Curlin F, Datta S, Bader AM. The effects of varying volumes of crystalloid administration before cesarean delivery on maternal hemodynamics and colloid osmotic pressure. *Anesth Analg.* 1996;83:299-303.
2. Cheun JK, Kim AR. Intrathecal meperidine as the sole agent for cesarean section. *J Korean Med Sci.* 1989;4:135-138.
3. Shibli KU, Russell IF. A survey of anaesthetic techniques used for caesarean section in the UK in 1997. *Int J Obstet Anesth.* 2000; 9:160-167
4. Turkoz A, Togal T, Gokdeniz R, I Topraks H, Esroy O, Effectiveness of intravenous ephedrine infusion during spinal anesthesia for caesarean section based on maternal hypotension, neonatal acid-base status and lactate levels. *Anaesth Intensive Care.* 2002;30:316-20
5. Clark, S.L., Cotton, D.B., Pivarnik, J.M., Lee, W., Hankins, G.D., Benedetti, T.J. and Phelan, J.P. Position Change and Central Hemodynamic Profile during Normal Third-Trimester Pregnancy and Post Partum. *American Journal of Obstetrics & Gynecology.* 1991; 164: 883-887
6. Jackson, R., Reid, J.A. and Thorburn, J. Volume Preload Is Not Essential to Prevent Spinal Induced Hypotension at Cesarean Section. *British Journal of Anaesthesiology.* 1995;75: 262-265.
7. Kang, Y.G., Abouleish, E. and Caritis, S. Prophylactic Intravenous Ephedrine Infusion during Spinal Anesthesia for Cesarean Section. *Anesthesia & Analgesia.* 1983;61: 839-842.
8. Rout C.C, Rocke D.A, Gouws E. Leg elevation and wrapping in the prevention of hypotension following spinal anaesthesia for elective Caesarean section. *Anaesthesia.* 1993; 48:304-308.
9. Morgan P.J, Halpern S.H, Tarshis J. The Effects of an Increase of Central Blood Volume before Spinal Anesthesia for Cesarean Delivery: A Qualitative Systematic Review. *Anesth Analg.* 2001; 92:997-1005.
10. Coe. A.I, Revanas. U.B, Centrallasertettet. K. A. Is Crystalloid preloading useful in spinal anaesthesia in the elderly? *Anesthesia* 1990; 45:241-243.
11. Rout C.C, Akoojee S.S, Rocke D.A, Gouws. E. Rapid Administration of Crystalloid Preload does not Decrease the Incidence of Hypotension after Spinal Anaesthesia for Elective Caesarean Section. *British J. Anaesth.* 1992;68:394-397.
12. Veyama. H, Yan-lung He, Tanigami. H, Mashimo. T. Effects of Crystalloid and colloid preload on blood volume in the parturient undergoing Spinal anesthesia for elective Cesarean Section. *Anesthesiology* 1999; 91:6:1571-76.
13. Pouta A.M, Karinen J, Vuolteenaho O.J. Effect of intravenous fluid preload on vasoactive peptide secretion during Caesarean Section under spinal anaesthesia. *Anaesthesia.* 1996; 51:128-132.
14. Jackson R, Reid J.A, Thorburn J. Volume preloading is not essential to prevent spinal- induced hypotension at Caesarean section .*British J. Anaesth.* 1995;75:262-265.
15. Buggy D, Higgins P, Moran C, O'Brien. D McCarroll. M. Prevention of Spinal Anesthesia-Induced Hypotension in the Elderly: Comparison between Preanesthetic administration of Crystalloids, Colloids, and No Prehydration. *Anesth Analg.* 1997; 84:106-10.
16. Ueyama.H, Yan-Ling. H, Hironobu. T, Mashimo. T, Yoshmya. I. Spinal Hypotension Associated with Cesarean section. *Anesthesiology* 1999; 91: 6: 1565-67.
17. Butterworth J.F, Piccione W, Berrizbeitia L.D, Dance. G, Shemin. R. J and Cohn. L. H. Augmentation of Venous Return by Adrenergic Agonists during Spinal Anesthesia. *Anesth Analg.* 1986; 65:612-6.
18. Vercauteren M.P, Copejans H.C, Hoffmann V.H, Adriaensen.H. A. Prevention of Hypotension by Single 5- mg Dose of Ephedrine during Small-Dose Spinal Anesthesia in Prehydrated Cesarean Delivery Patients, *Anesth Analg.* 2000;90:324-7.
19. Ngan Kee W.D, Khaw K.S, Lee B.B, Lau. T. K, Gin. T. A Dose-Response Study of Prophylactic Intravenous Ephedrine for the Prevention of Hypotension during Spinal Anesthesia for Cesarean Delivery. *Anesth Analg.* 2000; 90:1390-5.
20. Loughrey J.P.R, Walsh F, Gardiner J. Prophylactic intravenous bolus ephedrine for elective Caesarean Section under spinal anaesthesia. *European J. Anaesthesiology.* 2002; 19:63-68.
21. Madhusoodana, R. and Bhovi, A. Comparative Study of Ephedrine Infusion with the Preload of Crystalloids for Prevention of Hypotension during Spinal Anaesthesia for Elective Caesarean Section. *Indian Journal of Applied Research.* 2014; 4: 2249-2255.
22. Gajraj, N.M. Comparison of an Ephedrine Infusion with Crystalloid Administration for Prevention of Hypotension during Spinal Anesthesia. *Anesthesia & Analgesia.* 1993; 76: 1023-1026.

**Conflict of Interest: Nil** **Source of support: Nil**