

Original Research Article

Comparative evaluation on the effects of balanced crystalloid solution versus ringer lactate on acid base and electrolyte status in patients undergoing elective neurosurgeries

Balasubramanian.S^{1*}, Anil Ashokan², Harikrishnan³, Suganya.K⁴¹Associate Professor, Dept. of Anaesthesiology, Trichy SRM Medical College Hospital & Research Centre, Trichy, Tamil Nadu, India²Professor & Head, Dept. of Critical Care, Ananthapuri Hospitals & RI, Thiruvananthapuram, Kerala, India³Senior Consultant, Dept. of Critical Care, Ananthapuri Hospitals & RI, Thiruvananthapuram, Kerala, India⁴Assistant Professor, Dept. of Physiology, SRMC & RI, SRIHER, Porur, Chennai, Tamil Nadu, India

Received: 29-11-2021 / Revised: 16-12-2021 / Accepted: 06-01-2022

Abstract

Objectives: To compare the effects of balanced crystalloid solution versus lactated ringer's solution on acid base and electrolyte status in patients undergoing elective neurosurgeries. **Materials and methods:** The study was conducted at Ananthapuri Hospitals and Research institute, Thiruvananthapuram. A total of 80 patients were enrolled in the study. Randomisation was done using the sealed envelope technique. **Result:** Balanced Crystalloid Solutions provide stable acid base, sodium and potassium levels throughout the perioperative period. **Conclusion:** Being isotonic, Balanced Crystalloid Solutions can be recommended for Neurosurgeries.

Keywords: electrolyte, status

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Peri-operative fluid administration is an important aspect of surgical care but is often poorly understood. Foremost intravenous fluids (IVF) gained therapeutic importance in the treatment of cholera in the 1830s[1]. Since 1880 IVF began to be administered peri-operatively to compensate for the "injurious" effects of anesthesia. Clinical improvements were consequently noted, though the adverse effects of saline were observed. The most widely used intravenous crystalloid solutions differ considerably from human plasma in composition, tonicity, or both. The most frequently prescribed crystalloid solutions are normal saline and Ringer's lactate solutions. Possible negative effects of these solutions on acid base status and plasma tonicity prompted the development of so-called 'balanced' solution[2]. A balanced electrolyte solution has the physiological electrolyte pattern and infusion of such a balanced solution is devoid of the risk of iatrogenic disruptions except for potential volume overload[2]. As one might expect excessive use of saline has been observed to result in hyperchloremic acidosis which has been identified as a potential side effect of saline based solutions. There is debate about the morbidity associated with this condition, although some consider the associated morbidity is probably low. It has been suggested that the use of balanced solutions may avoid this effect[3].

Materials and methods

The study was conducted at Ananthapuri Hospitals and Research institute, Thiruvananthapuram. Proper institutional Ethics Committee approval was obtained and a written informed consent was acquired from all patients who participated in the study. The study is a prospective observational study for a period of one year (1st June 2014 to 31st May 2015). A total of 80 patients were enrolled in the study. Randomisation was done using the sealed envelope technique. In order to get statistically significant results; a sample size of forty was allocated to each group.

Inclusion criteria

- ASA physical status I and II.
- Elective neurosurgery of more than two hours duration
- Capable of giving Informed Consent
- Age between 25-65 years.

Exclusion criteria

- Patients with extensive trauma.
- Patients with diabetic ketoacidosis
- Patients with renal failure
- Patients with pre-existing hypotension
- Procedures requiring massive blood transfusion

Sample size (4) was calculated according to the formula:

$$Z\alpha = 1.96 \text{ for } \alpha = 0.05$$

$$Z\beta = 0.84 \text{ for } \beta = 0.20$$

$$\mu T = \pi c \text{ (difference in mean)}$$

$$\sigma = \text{pooled standard deviation}$$

$$\text{Standard deviation of post op base excess } (\sigma) = 2.754$$

$$\text{Difference in post op base excess } (\Delta) = 1.8$$

$$N = \frac{2(1.96 + 0.84)^2 \times 2.754^2}{1.8^2}$$

Final sample size for the study is 37 rounded to 40 in each group

Patients were randomly allocated using the sealed envelope technique into two groups. Sealed opaque envelopes (equal to the number of patients) each containing a card was made. On half the number of cards it was written "Lactated Ringer's Solution" and on the other half it was written "Balanced Crystalloid Solution" indicating the intravenous fluids to be used for the surgery. The envelopes were shuffled and one picked randomly when each patient was taken up. 40 patients received Lactated Ringer's solution and 40 received Balanced Crystalloid solution (Stereofundin). Urine output was maintained at more than 0.5ml/kg/ hr as far as possible.

Baseline arterial blood gas analysis was done to measure pH, pCO₂, bicarbonate and base excess levels. Baseline serum sodium, potassium and chloride levels were also noted. Anesthetic management was standardized to propofol 2.5mg/kg, Fentanyl 2microgram/kg and vecuronium 0.1mg/kg for induction and vecuronium infusion and sevoflurane for maintenance of the patients were monitored via arterial and central venous catheters.

*Correspondence

Dr. Balasubramanian.S

Associate Professor, Dept. of Anaesthesiology, Trichy SRM Medical College Hospital & Research Centre, Trichy, Tamil Nadu, India
E-mail: doc.bala79@gmail.com

Arterial blood gas analysis and serum sodium, potassium and chlorides levels were measured intra-operatively after three hours and post-operatively after one hour and every three hours for the next six hours.

Mechanical ventilation was performed to maintain the arterial oxygen tension at 200-300 mmHg and the arterial carbon dioxide pressure at 35-40 mmHg. Intra-operative monitoring included end tidal carbon dioxide, Cardiac electrical activity, Central venous pressure, arterial blood pressure and pulse-oximetry.

Result

Table 1: Distribution according to American Society of anesthesiologist physical status classifications (ASAPS)

ASA	Lactated Ringer Solution		Balanced Crystalloid Solution		Z ²	P
	Count	Percent	Count	Percent		
Grade I	19	47.5	23	57.5	0.8	0.370
Grade II	21	52.5	17	42.5		

In table 1 the Chi square statistics $t Z1 - U^{R-P} - P-005$ showed that the groups were compared based on the ASA grading of patients.

Table 2: Comparison of MAP (mmHg) between groups at different time interval

MAP (mmHg)	Lactated Ringer			Balanced Crystalloid			t	p		
	Solution			Solution						
	Mean	SD	N	Mean	SD	N				
30 Min	65.0	2.1	40	65.4	2.0	40	0.76	0.449		
1 hr	65.0	2.1	40	65.5	2.1	40	0.91	0.367		
2 hr	64.7	2.1	40	65.2	2.0	40	0.96	0.339		
3 hr	65.0	2.1	40	65.4	2.1	40	0.73	0.466		

Table 2 shows that the groups were compared based on their MAP in the intra-operative period. The MAP in both groups was stable throughout the surgery.

Table 3: Comparison of CVP (mmHg) between groups at different time interval

CVP (mmHg)	Lactated Ringer			Balanced Crystalloid			t	p		
	Solution			Solution						
	Mean	SD	N	Mean	SD	N				
30 Min	7.8	1.4	40	8.0	1.4	40	0.72	0.471		
1 hr	7.8	1.4	40	7.9	1.4	40	0.56	0.579		
2 hr	7.8	1.4	40	8.1	1.4	40	0.82	0.414		
3 hr	8.0	1.4	40	8.3	1.4	40	0.88	0.380		

In table 3 the groups were compared based on their CVP in the intra-operative period.

Table 4: Comparison of pH between groups at different time interval

pH	Lactated Ringer			Balanced Crystalloid			t	p		
	Solution			Solution						
	Mean	SD	N	Mean	SD	N				
Pre Op	7.42	0.06	40	7.43	0.04	40	1.41	0.162		
Intra Op after 3 Hrs	7.41	0.07	40	7.41	0.06	40	0.39	0.698		
Post op 2 nd Hr	7.43	0.09	40	7.44	0.09	40	0.6	0.547		
Post op 5 th Hr	7.42	0.09	40	7.42	0.08	40	0.38	0.704		
Post op 8 th Hr	7.45	0.07	40	7.44	0.08	40	0.5	0.621		

Table 4 shows that the mean pH does not differ between two groups at all time intervals (0.05)

Table 5: Comparison of PaCO₂ between groups at different time interval

PaCO ₂ (mmHg)	Lactated Ringer			Balanced Crystalloid			t	p		
	Solution			Solution						
	Mean	SD	N	Mean	SD	N				
op	36.14	7.26	40	37.01	6.04	36.14	0.58	0.039		
after 3 Hr	35.24	6.88	40	38.46	6.86	35.24	2.1	0.994		
2 nd Hr	31.26	8.34	40	31.25	7.48	31.26	0.01	0.159		
5 th Hr	33.16	7.84	40	35.57	7.29	33.16	1.42	0.391		
8 th Hr	33.03	6.85	40	34.28	6.12	33.03	0.86	0.393		

Table 5 shows that PaCO₂ levels were measured intra-operatively after three hours and respectively after one hour and every three hours from the next six hours

Table 6: Comparison HCO₃⁻ between groups at different time interval

HCO ₃ ⁻	Lactated Ringer Solution			Balanced Crystalloid Solution			t	p
	Mean	SD	N	Mean	SD	N		
Pre Op	23.41	3.34	40	24.59	2.13	40	1.88	0.064
Intra Op after 3 Hrs	22.66	2.83	40	23.95	2.93	40	24	0.049
Post 2 nd Hr	21.37	3.28	40	22.71	3.60	40	174	0.086

Post 5 th Hr	22.56	3.70	40	23.17	3.99	40	071	0.480
Post 8 th Hr	23.38	3.16	40	24.12	3.04	40	107	0.289

Table 6 shows that in Lactated Ringer Solution group, mean HCO₃- value is less when compared to Balanced Crystalloid Solution in all ABG samples but the difference is statistically significant (p value = 0.049) in intra operative samples.

The HCO₃- level decreases in intra operative period and post-operative 2nd hour samples. The decrease was maximum in

postoperative 2nd hour samples in both groups. Then HCO₃- levels gradually increases to reach the preoperative level during 8th hour of post-operative period. In Balanced crystalloid solution group HCO₃- values were within the normal range.

Table 7: Comparison of Base Excess between groups at different time interval

Base Excess (mEq/L)	Lactated Ringer Solution				Balanced Crystalloid Solution			
	Mean	SD	N	Mean	SD	N	I	P
Pre Op	-1.16	3.50	40	0.28	3.13	40	1.93	0.057
Intra Op after 3Hrs	-2.2	3.3	40	-0.8	3.5	40	1.95	0.055
Post 2 nd Hr	-3.5	3.9	40	-2.2	3.9	40	1.43	0.156
Post 5 th Hr	-2.5	4.2	40	-1.7	4.4	40	0.77	0.442
Post 8 th Hr	-1.2	3.3	40	-0.6	3.5	40	0.8	0.424

Table 7 shows that base excess decreases during intra operative and postoperative period samples in both the two groups. The decrease is more for the Lactated Ringer solution group but the difference is not statistically significant. The decrease in base excess was maximum in the 2nd hour of postoperative period in both the groups.

Table 8: Comparison of Na+ between at different time interval

Na+ (mEq/L)	Lactated Ringer Solution				Balanced Crystalloid Solution			
	Mean	SD	N	Mean	SD	N	I	P
Pre Op	138.3	5.4	40	138.0	5.1	40	0.28	0.784
Intra Op after 3 Hrs	138.3	4.7	40	138.1	6.7	40	0.17	0.862
Post 2 nd Hr	132.7	6.7	40	132.2	9.0	40	0.28	0.779
Post 5 th Hr	129.9	5.9	40	131.9	7.3	10	1.33	0.189
Post 8 th Hr	130.4	4.3	40	132.9	8.1	40	1.73	0.087

Table 8 shows that serum sodium level decreases in the postoperative period in both the groups. The mean serum sodium does not differ between the two groups.

Table 9: Comparison of K+ between groups at different time interval

K+ (mEq/L)	Lactated Ringer Solution				Balanced Crystalloid Solution			
	Mean	SD	N	Mean	SD	N	I	P
Pre Op	3.6	0.6	40	3.5	0.5	40	0.79	0.434
Intra Op after 3 Hrs	3.6	0.5	40	3.6	0.5	40	0.31	0.761
Post 2 nd Hr	3.4	0.9	40	3.3	0.6	40	0.98	0.330
Post 5 th Hr	3.3	0.6	40	3.3	0.7	40	0.11	0.915
Post 8 th Hr	3.5	0.5	40	3.4	0.6	40	0.23	0.820

Table 9 shows that the difference in mean serum potassium between the two groups in all time intervals was not statistically significant. Cl-(mEq/L)

Table 10: Comparison of CI between groups at difference time interval

CI-	Lactated Ringer Solution				Balanced Crystalloid Solution			
	Mean	SD	N	Mean	SD	N	I	P
Pre Op	100.2	4.0	100.4	5.4	40	0.21	0.98	0.832
Intra Op after 3 Hrs	99.9	3.9	40	100.4	6.0	40	0.46	0.649
Post 2 nd Hr	97.3	7.4	40	95.3	9.4	40	1.97	0.289
Post 5 th Hr	92.6	7.2	40	95.2	7.4	40	16	0.115
Post 8 th Hr	93.4	6.2	40	95.6	7.3	40	1.47	0.146

In table 10 the serum chloride decreases in the postoperative periods in both the groups. The different in mean serum chloride between the two groups is not statistically significant.

Discussion

The present study was designed to compare the effect of Lactated Ringer's Solution and Balanced Crystalloid Solution (sterofundin) on intra operative and post operative acid base status and serum electrolyte changes mainly sodium, potassium and chloride levels.

This was done by analysis of a sample of arterial blood for taking the values of blood for HCO₃, base excess, Na⁺ K⁺ and Cl⁻ values. The blood gas analysis is done at preoperative period, intra operative period after 3 hours and post operative 2nd 5th and 8th hour samples.

80 patients were included in the study and 40 received Lactated Ringer's solution, the rest 40 received balanced crystalloid solution (Sterofundin). The anesthetic technique was same in all the cases.

The results of our study shows that sterofundin may be superior to

Lactated Ringer's solution in terms of maintaining pH balance providing a more stable acid base profile and reducing risk of hypernatremia which is in concurrence with the study done by Padmapriya et al.[5]. Whereas there is no statistically significant difference in pH profile and serum sodium status between Balanced Crystalloid solution and Lactated Ringer's Solution group were noted in our study.

The difference in mean PaCO₂ during intra operative period after 3 times is statistically significant (0.039) but the value appear to the in conge in both the two groups. The mean PaCO₂ at postoperative periods at 2nd hour, 5th hour and 8th hour is less in both the groups, but they are not statistically significant. This may be due to the spontaneous respiratory effort by the patient. Pain and anxiety night

be the reason for hyper ventilation[6]. The MAP and CVP in both groups were stable throughout the surgery.

Unlike the findings of the study done by Potura E.Lindner G et al.[7], where patient had hyperkalemia with administration of acetate buffered balanced crystalloid, our study showed serum potassium values within the normal range in both Balance crystalloid and Lactated Ringer's group. They also noted less hyperchloremia and metabolic acidosis which is in line with the findings of our study. In our study we had stable acid base profile and lower serum chloride levels for sterofundin group which is similar to the findings of the study done by Disma N.Mameli L et al.[8,9], who concluded that sterofundin is safer than normal saline in protecting young children undergoing major surgery against the risk of increasing plasma chlorides and subsequent metabolic acidosis.

Likewise our study also reverted lower serum chloride levels in postoperative period for the both Balanced Crystalloid and lactated Ringer group which are significant with the study of EM. Stand T et al.[10], which shows lower serum chloride levels in HES balanced group. The serum potassium levels were not significantly changed in both the groups and acid base profile of balanced crystalloid solution were improved. Similar changes were observed in the study of Hadmioglu N.Saadawy et al.[11], where plasma-lyte was used as balanced crystalloid solution.

The inference about Lactated Ringer's Solution in our study proved to be consistent with the findings of Frumento et al.[12], who revealed less hyperkalemia and acidosis in Lactated Ringer group. Both the solutions avoided the development of hyperchloremic metabolic acidosis.

Though various studies were done[13,14,15] comparing lactated Ringer's and Balanced Crystalloid solution because of the potential clinical differences between solutions and the lack of definitive data, a comparative study is planned, on patients insisting the importance of choosing the right fluid for the right patient.

Conclusion

There is a statistically significant difference in the serum bicarbonate level in the intra operative period between Lactated Ringer's solution and Balanced Crystalloid Solution (Sterofundin). Balanced Crystalloid Solution provides a more stable acid base profile, but there is not much difference in pH profile between both the groups probably because of metabolic compensation.

Our study showed stable sodium levels during intra operative and postoperative periods for both Lactated Ringer's Solution and Balanced Crystalloid Solution (Sterofundin) but no statistical significance difference in serum potassium levels in intra operative & postoperative period in both the groups. Also the stable serum chloride levels in postoperative period for both the Balanced Crystalloid and lactated Ringer group reveals the fact that there is no significant hyperchloremic acidosis with both Lactated Ringer's Solution and Balanced Crystalloid Solution (Sterofundin).

Recommendations

- Balanced Crystalloid Solutions provide stable acid base, so it can be recommended for prolonged surgeries and trauma.
- In contrast to other crystalloid solutions, Balanced Crystalloid solutions provide stable sodium and potassium levels throughout the perioperative period.
- Being isotonic, Balanced Crystalloid Solutions can be recommended for Neurosurgeries.
- Since few studies reported Hyperchloremic acidosis while using normal saline, we recommended further studies to compare Normal Saline with Balanced Crystalloid Solutions.
- We recommended Balanced Crystalloid Solutions in patients with hepatic disorders as the metabolizable anion used in Balanced Crystalloid Solution is mainly Acetate.

Conflict of Interest: Nil **Source of support: Nil**

Reference

1. Latta T.Malignant Cholera Documents communicated by the Central Board of Health London. Relative to the treatment of cholera by the copious injection of aqueous and saline fluids into the veins. The Lancet 1832;18(457):274-80.
2. Zabder R Fluid Management Bibliomed – Medizinische Verlagsgesellschaft mbH. Melsungen 2006. Available from <http://dap.ddb.de>.
3. Guidet B.son N.Rocca GD. Kozek S. valet B. annane D.james M A balanced view of balanced solutions Critical care 14.325
4. Wilkes Nj, woolf R.Mutch M.Mallet S.V. peachy T.Stephen R. Mythen MG the effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion elderly surgical patients. Anesthesia and analgesia 2001;93 811-810.
5. Shariffuddin PadmaPriya. Adeline CSM. Chinna K.Chan L. The Effects of Sterofundin Versus Ringer's lactated on Acid –Base And Electrolyte Status in Paediatric patients Undergoing Major Surgery. A Double Blind Randomised
6. Grocott MPW. Mythen MG. Gan TJ. Perioperative fluid management and clinical outcomes in adults Anesthesia & Analgesia 2005;100:1093.
7. Potura F.Lindner G.Biesenbach P.Funk GC.Reiterer C.Kabon B. Schwarz C.Druml W.Eleischmann E. Acetate-Buffered Balanced Crystalloid Versus 0.9% Saline in Patients With End-Stage Renal Disease Undergoing Cadavetric Renal Transplantation A Prospective Randomized Controlled Trial Anesthesia and Analgesia 2015;120:123-9.
8. Disma N. Mameli L.Pistorio A. Davidson A.Barabino P.Locatelli PB, Sonzogni V.Montobbio G.A novel balanced isotonic sodium solution vs normal saline during major surgery in children up to 36 months a multicenter RCT Pediatric Anesthesia 2014;24 (9) 980- 986.
9. Siggard-Andersen O, Engel K.A micro method for determination of pH. carbon dioxide tension, base excess and standard bicarbonate in capillary blood. Scandinavian journal of Clinical & Laboratory Investigation 1960;12 172-6.
10. Base EM. Stand T.Lassingg A.Skhirtadze K.Junghernich C, Gayko D efficacy and safety of hydroxyethyl starch 6% 130 0.4 in a balanced electrolyte solution (volulyte) during cardiac surgery journal of Cardiothoracic and Vascular Anesthesia 2011;25:407-414.
11. Hadmioglu N.Saadawy L.Saglam T.Ertug Z, Dinckan A the Effect of different crystalloid solutions on acid-base balance and early kidney function after Kidney Transplantation Anesthesia and Analgesia 2008;107:264-9.
12. O'Malley CMN. Frumento RJ.Hardy MA. Benvenisty AL.Brentens HE, mecer JS. Bennet-Guerrero E A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesthesia and analgesian 2005;1518-152.
13. Delaney A.Finifer S.Fluid and electrolyte therapy In: Bersten AD.son N.editors oh's Intensive Care Manual 6th Philadelphia Elsevier. 2009 p965-970.
14. Williams EE, Hildebrand KL. McCormick SA, Bedel MJ The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesthesia and analgesia 1999;88.999- 1003.
15. Wilkes Nj, woolf R.Mutch M.Mallet S.V. peachy T.Stephen R. Mythen MG the effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion elderly surgical patients. Anesthesia and analgesia 2001;93 811-810.