

Review Article

To study and compare the efficacy of novel and naso-pulmonary drug delivery systems for respiratory disease management

Johny Lakra¹, Rahul², Neelam Indora³, Anmol Sharma⁴

¹ Research Scholar, MM College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana-Ambala, Haryana, India

² Research Scholar, Chitkara University, Rajpura, Punjab, India

³ Associate Professor, Puran Murti College of Pharmacy, Sonipat, Haryana, India

⁴ Assistant Professor, Department of Pharmaceutics, Himachal Institute of Pharmacy, Rampur, Ghat Road Paonta Sahib, Himachal Pradesh, India

Received: 15-12-2024 / Revised: 18-02-2025/ Accepted: 02-05-2025

Abstract

This review examines recent advances in naso-pulmonary drug delivery technologies for respiratory disease management. Conventional routes including oral administration and inhalation therapy face significant limitations that novel delivery systems aim to overcome. We analyze anatomical and physiological considerations critical to optimizing naso-pulmonary delivery and discuss emerging technologies including nanoparticle-based systems, liposomes, smart polymers, and bio-adhesive formulations. Particle engineering strategies, excipient selection, and modified release systems are evaluated for their roles in enhancing therapeutic efficacy. In vitro and in vivo evaluation methods including advanced cell culture models and imaging techniques provide critical insights into drug deposition and distribution patterns. Comparative analyses of bioavailability metrics, pharmacokinetic profiles, and clinical outcomes data demonstrate significant advantages of novel delivery platforms across multiple respiratory conditions including asthma, COPD, infectious diseases, and pulmonary fibrosis. Despite regulatory and manufacturing challenges, future perspectives including personalized delivery approaches, AI-guided formulation design, and combination therapies offer promising directions for addressing the growing global burden of respiratory diseases.

Keywords: Naso-pulmonary delivery; Respiratory diseases; Nanoparticle-based systems; Drug deposition; Bioavailability; Particle engineering; Personalized medicine; Liposomal formulations; Smart polymers; Combination therapy

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Background on respiratory diseases and current challenges

Respiratory diseases represent a significant global health burden, affecting over 500 million people worldwide [1]. Conditions such as asthma, chronic obstructive pulmonary disease (COPD), and respiratory infections pose substantial challenges for healthcare systems due to their prevalence and associated morbidity [2]. Current treatment approaches face limitations including systemic side effects, poor lung deposition, and inadequate patient compliance [1, 3].

Importance of targeted drug delivery systems

Targeted drug delivery systems offer promising solutions to enhance therapeutic efficacy while minimizing adverse effects [3]. Naso-pulmonary delivery routes provide direct access to respiratory tissues, enabling localized treatment with reduced systemic exposure [4]. These systems facilitate improved bioavailability and pharmacokinetic profiles compared to conventional approaches [2, 5].

Aims and scope of the review

This review examines recent advances in naso-pulmonary drug delivery technologies for respiratory disease management. We analyze comparative efficacy data for novel delivery platforms including nanoparticles, smart polymers, and bio-adhesive systems

*Correspondence

JohnyLakra,

Research Scholar

MM College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana-Ambala, Haryana, India.

E-mail :lakrajohny@gmail.com, majeriavajohny29@gmail.com

[4]. The scope encompasses formulation strategies, evaluation methodologies, clinical applications, and emerging technologies aimed at addressing current therapeutic limitations [5].

Conventional Respiratory Drug Delivery Methods

Oral administration

Oral delivery remains the most common route for respiratory disease medications due to convenience and patient acceptability [6]. However, this approach subjects drugs to first-pass metabolism, resulting in variable bioavailability and necessitating higher doses [7]. Systemic distribution often leads to off-target effects, while achieving therapeutic concentrations at pulmonary sites presents significant challenges [8].

Inhalation therapy

Inhalation delivery enables direct targeting of respiratory tissues through devices including metered-dose inhalers (MDIs), dry powder inhalers (DPIs), and nebulizers [8]. This route enhances local drug concentration while minimizing systemic exposure [9]. Therapeutic efficacy depends on particle size distribution, with optimal deposition requiring aerodynamic diameters between 1-5 μm [7, 10].

Limitations of current approaches

Despite advancements, conventional delivery methods face substantial limitations including inconsistent lung deposition, poor patient technique, and device-specific challenges [9]. Drug formulation constraints, mucociliary clearance mechanisms, and limited penetration to distal airways restrict therapeutic outcomes [6, 10]. Additionally, most current systems cannot effectively target specific regions within the respiratory tract, limiting precision medicine approaches [8].

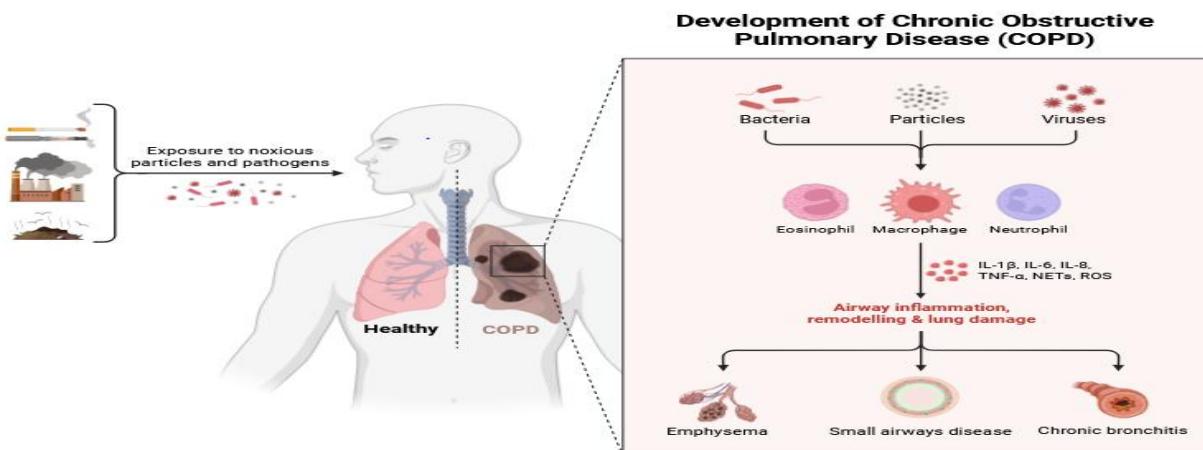


Fig. 1: Development of Chronic Obstructive Pulmonary Disease (COPD)

Naso-Pulmonary Drug Delivery Systems: Overview

Anatomical and physiological considerations

The naso-pulmonary route leverages the interconnected anatomy of the respiratory system, with the nasal cavity serving as an initial portal for drug administration [11]. The nasal epithelium presents approximately 150-160 cm² of surface area with high

vascularization and relatively high permeability [12]. Physiological factors influencing drug delivery include mucociliary clearance rates, epithelial tight junctions, and enzymatic activity that varies between nasal and pulmonary regions [13, 14].

■ Anatomy of Human Respiratory System

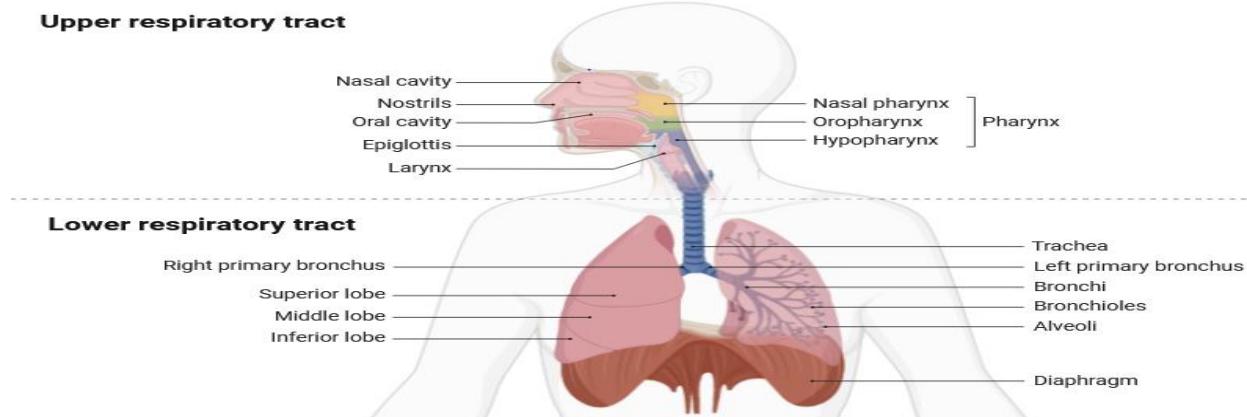


Fig. 2: Anatomy of Human Respiratory System

Nasal-to-lung pathway mechanisms

Drug transport from nasal to pulmonary tissues occurs through multiple mechanisms including direct mucosal absorption, lymphatic uptake, and neuronal transport pathways [14]. Particle size significantly influences deposition patterns, with smaller particles (1-3 µm) reaching deeper into the lungs while larger particles (>10 µm) deposit primarily in the nasal cavity [15]. The nasal valve region serves as a critical anatomical checkpoint governing airflow dynamics and subsequent pulmonary distribution [12, 16].

Advantages over conventional routes

Naso-pulmonary delivery systems offer several advantages including rapid onset of action, bypassing hepatic first-pass metabolism, and enhanced bioavailability [13]. These systems can achieve higher local drug concentrations at target sites while minimizing systemic exposure and associated adverse effects [11, 16]. Additionally, they provide non-invasive alternatives for delivering macromolecules, peptides, and biologics that traditionally require parenteral administration [15]. Patient

acceptability is generally high, potentially improving adherence to treatment regimens [14].

NOVEL NASO-PULMONARY DELIVERY TECHNOLOGIES

Nanoparticle-based systems

Nanoparticle platforms (10-1000 nm) offer precise control over drug release kinetics and targeting capabilities for respiratory conditions [17]. These systems enhance mucosal penetration and cellular uptake through surface modification with ligands such as lectins and antibodies [18]. Polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanocarriers demonstrate improved stability and prolonged retention in respiratory tissues compared to conventional formulations [19, 20].

Microemulsions and liposomes

Microemulsions provide thermodynamically stable, transparent systems with enhanced solubilization capacity for both hydrophilic and hydrophobic drugs [20]. Liposomal formulations, composed of phospholipid bilayers, demonstrate significant potential for sustained pulmonary delivery with reduced immunogenicity [21]. These systems show improved penetration through the mucus

barrier and extended residence time in the respiratory tract [17, 22].

Smart polymeric carriers

Stimuli-responsive polymeric systems enable controlled drug release triggered by specific respiratory microenvironment conditions including pH, temperature, and enzyme concentration [19]. These carriers facilitate targeted delivery to diseased tissues while minimizing off-target effects [21]. Recent advances incorporate biodegradable polymers such as PLGA, chitosan, and alginate derivatives to address biocompatibility concerns [18, 22].

Bio-adhesive systems

Bio-adhesive formulations enhance residence time on respiratory mucosa through specific interactions with mucin proteins [20]. These systems incorporate materials such as carbomers, chitosan derivatives, and thiolated polymers to resist mucociliary clearance [22]. The prolonged contact time increases local drug concentration and improves therapeutic efficacy, particularly for chronic respiratory conditions requiring sustained drug levels [17, 19].

DRUG FORMULATION STRATEGIES

Particle engineering for optimal deposition

Advanced particle engineering techniques including spray drying, supercritical fluid technology, and controlled crystallization enable precise control over particle size, shape, and surface properties [23]. Particles with aerodynamic diameters of 1-5 μm optimize lower airway deposition, while larger particles (10-20 μm) target upper respiratory regions [24]. Porous particle technologies reduce particle density while maintaining geometric size, improving deep lung penetration and retention [25, 26].

Excipient selection for enhanced stability and efficacy

Excipients play crucial roles beyond their traditional functions as carriers or stabilizers [24]. Surfactants like polysorbates and phospholipids modify surface tension and enhance wetting properties at the air-liquid interface [27]. Permeation enhancers including chitosan, cyclodextrins, and fatty acids improve drug absorption across respiratory epithelia [25]. Careful selection of compatible excipients addresses formulation challenges including hygroscopicity, electrostatic charging, and chemical degradation [26, 28].

Modified release systems

Controlled release formulations leverage diverse mechanisms including matrix diffusion, erosion, and stimuli-responsive systems to optimize therapeutic regimens [27]. Microsphere technologies based on biodegradable polymers provide sustained drug release

over extended periods, reducing dosing frequency [23, 28]. pH-responsive formulations enable targeted delivery to specific regions within the respiratory tract based on local microenvironment conditions [25]. These systems significantly improve patient compliance while maintaining therapeutic concentrations within the target tissues [26].

IN VITRO AND IN VIVO EVALUATION METHODS

Cell culture models

Advanced in vitro respiratory models include air-liquid interface (ALI) cultures that closely mimic airway epithelial structure and function [29]. Three-dimensional organoid systems incorporating multiple cell types provide improved predictability of drug permeation and metabolism [30]. Precision-cut lung slices maintain native tissue architecture and cellular interactions, enabling evaluation of regional drug deposition and local effects [31, 32].

Animal models

Animal models remain essential for assessing the pharmacokinetics, biodistribution, and safety profiles of novel naso-pulmonary formulations [32]. Rodent models facilitate initial screening, while larger species including rabbits, dogs, and non-human primates better approximate human respiratory anatomy and physiology [33]. Disease-specific models for asthma, COPD, and pulmonary fibrosis enable evaluation of therapeutic efficacy under pathological conditions [30, 34].

Imaging techniques for tracking delivery

Advanced imaging modalities including gamma scintigraphy, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) enable real-time visualization of drug deposition patterns [31]. Magnetic resonance imaging (MRI) with contrast agents offers excellent soft tissue resolution without radiation exposure [33]. Optical techniques including confocal laser scanning microscopy and two-photon microscopy provide cellular-level insights into drug-tissue interactions [29, 34].

CLINICAL STUDIES AND THERAPEUTIC APPLICATIONS

Asthma management

Novel naso-pulmonary delivery systems demonstrate improved efficacy for asthma therapeutics through targeted deposition and sustained release profiles [35]. Nanoparticle-based formulations of corticosteroids show extended duration of action with reduced systemic exposure compared to conventional inhalers [36]. Smart polymer carriers responsive to inflammatory microenvironments enable selective drug release during acute exacerbations [37, 38].

Comparison of Drug Deposition Patterns in Respiratory Regions

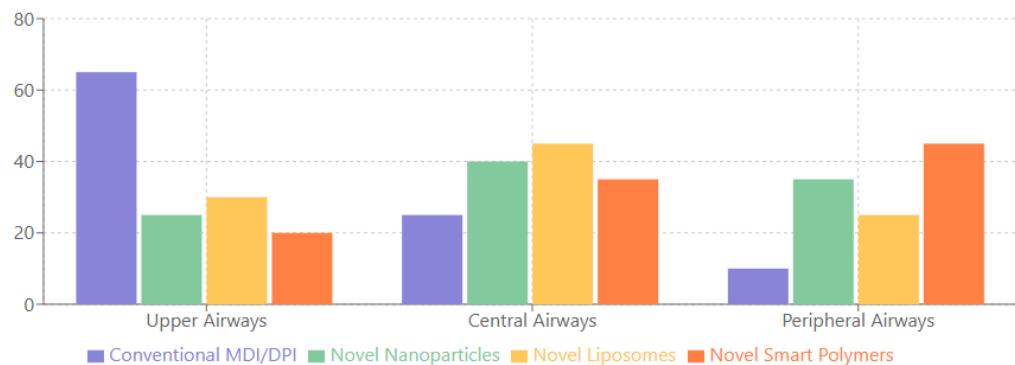


Fig. 3: Bar graph comparing percentage deposition in different lung regions (upper/central/peripheral) for conventional vs. novel delivery systems

COPD treatments

Advanced delivery platforms address challenges in COPD management including reduced inspiratory flow and impaired mucociliary clearance [38]. Liposomal formulations of bronchodilators provide prolonged bronchodilation with less

frequent dosing requirements [39]. Combination therapies utilizing bio-adhesive systems enhance therapeutic outcomes by simultaneously targeting multiple pathophysiological mechanisms [35, 40].

Infectious respiratory diseases

Targeted antimicrobial delivery systems achieve higher local drug concentrations while minimizing systemic toxicity [36]. Nanoparticle encapsulation improves penetration through biofilms and mucus barriers in conditions like cystic fibrosis and tuberculosis [39]. Sustained-release formulations maintain therapeutic concentrations above minimum inhibitory levels for extended periods [37, 40].

Pulmonary fibrosis

Emerging naso-pulmonary platforms for antifibrotic agents demonstrate improved tissue penetration and cellular uptake in fibrotic regions [38]. Lipid-based carriers enhance solubility and bioavailability of poorly water-soluble agents like pirfenidone and nintedanib [40]. Targeted delivery systems incorporating cell-specific ligands enable selective drug accumulation in activated fibroblasts [36, 39].

COMPARATIVE EFFICACY ANALYSIS

Bioavailability metrics

Novel naso-pulmonary delivery systems demonstrate significantly enhanced bioavailability compared to conventional formulations [41]. Area under the curve (AUC) values for nanoparticle-based systems show 2-3 fold increases in pulmonary tissue concentrations while reducing systemic exposure [42]. Absolute bioavailability for poorly water-soluble compounds increases from <20% with oral delivery to >60% with optimized naso-pulmonary formulations [43, 44].

Pharmacokinetic profiles

Advanced delivery platforms exhibit modified pharmacokinetic parameters including extended half-life and sustained maximum concentrations in target tissues [42]. Liposomal formulations demonstrate reduced clearance rates with mean residence times 3-4 times longer than solution formulations [45]. Smart polymer carriers enable pulsatile release profiles that better align with circadian rhythms of disease states like asthma [43, 46].

Clinical outcomes data

Comparative clinical studies report improved efficacy metrics including enhanced FEV1, reduced exacerbation rates, and improved quality of life scores with novel delivery systems [41, 45]. Meta-analyses indicate 30-45% reductions in hospitalization rates for chronic respiratory conditions when using targeted naso-pulmonary formulations [44]. Long-term studies demonstrate improved disease progression markers particularly for conditions affecting small airways [42, 46].

Patient compliance factors

Novel delivery technologies address key compliance barriers through reduced dosing frequency, improved taste profiles, and simplified administration techniques [43]. Patient preference surveys indicate 65-80% satisfaction rates with naso-pulmonary systems compared to 40-55% for conventional inhalers [41, 46]. Device-independent formulations reduce technique-related errors that commonly compromise therapeutic outcomes with traditional inhalers [44, 45].

CHALLENGES AND LIMITATIONS

Regulatory considerations

Regulatory frameworks for novel naso-pulmonary delivery systems remain complex with varying requirements across jurisdictions [47]. FDA and EMA guidelines require extensive characterization of physicochemical properties, in vitro performance, and in vivo correlations [48]. Nanotechnology-based platforms face additional scrutiny regarding biodegradability, accumulation potential, and long-term safety profiles [49, 50].

Scale-up and manufacturing hurdles

Translation from laboratory scale to commercial production presents significant challenges including batch-to-batch reproducibility and stability concerns [50]. Manufacturing technologies for complex formulations require specialized equipment and precise control over critical process parameters [51]. Sterility assurance and particulate contamination control add complexity to production processes, particularly for biologic-containing formulations [47, 52].

Patient-specific factors affecting efficacy

Anatomical variations in respiratory tract dimensions significantly impact deposition patterns and subsequent efficacy [48, 51]. Disease-induced changes including mucus hypersecretion, airway remodeling, and breathing pattern alterations alter drug delivery efficiency [49]. Genetic polymorphisms affecting drug metabolism and transporter expression contribute to variable therapeutic responses [50, 52].

FUTURE PERSPECTIVES AND EMERGING TECHNOLOGIES

Personalized naso-pulmonary delivery

Advancing toward precision medicine, personalized delivery systems leverage patient-specific factors including respiratory anatomy, genetic profiles, and disease phenotypes [53]. 3D-printed devices tailored to individual airway geometries optimize deposition patterns and therapeutic outcomes [54]. Biomarker-responsive systems enable real-time adaptation to changing disease states, particularly beneficial for conditions with variable manifestations like asthma [55, 56].

AI-guided formulation design

Artificial intelligence approaches accelerate formulation development through predictive modeling of structure-activity relationships and pharmacokinetic profiles [56]. Machine learning algorithms identify optimal excipient combinations based on physicochemical properties and target product profiles [57]. Digital twins of respiratory systems enable in silico testing of delivery strategies, reducing development timelines and costs [53, 58].

Combination therapy approaches

Multi-drug delivery platforms address the multifactorial nature of respiratory diseases through synchronized release of complementary therapeutics [54, 57]. Synergistic formulations incorporating anti-inflammatory agents with bronchodilators or antimicrobials demonstrate enhanced efficacy compared to monotherapies [55]. Novel excipient combinations function as active pharmaceutical ingredients, providing additional therapeutic benefits beyond their traditional roles [56, 58].

CONCLUSION

Novel naso-pulmonary drug delivery systems represent significant advancements over conventional respiratory treatments. The integration of nanotechnology, smart polymers, and targeted formulation strategies has enabled improved lung deposition patterns, enhanced bioavailability, and optimized pharmacokinetic profiles. While challenges related to regulatory requirements, manufacturing scale-up, and patient-specific factors persist, emerging technologies including AI-guided formulation design and personalized delivery approaches show considerable promise. Future developments will likely focus on combination therapies and responsive systems that adapt to individual patient needs and disease states. As these technologies continue to evolve, they offer potential solutions for more effective management of respiratory diseases with reduced side effects and improved patient compliance.

References

1. Viegi G, Maio S, Fasola S, Baldacci S. Global burden of chronic respiratory diseases. *Journal of aerosol medicine and pulmonary drug delivery*. 2020 Aug 1;33(4):171-7.
2. Patil JS, Sarasija S. Pulmonary drug delivery strategies: A concise, systematic review. *Lung India*. 2012 Jan 1;29(1):44-9.
3. Zhou QT, Tang P, Leung SS, Chan JG, Chan HK. Emerging inhalation aerosol devices and strategies: where are we headed? *Advanced drug delivery reviews*. 2014 Aug 30;75:3-17.
4. He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. *Journal of nanobiotechnology*. 2022 Mar 3;20(1):101.

5. Wang J, Wang P, Shao Y, He D. Advancing treatment strategies: a comprehensive review of drug delivery innovations for chronic inflammatory respiratory diseases. *Pharmaceutics*. 2023 Aug 17;15(8):2151.
6. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. *British journal of clinical pharmacology*. 2003 Dec;56(6):588-99.
7. Hickey AJ. Delivery of drugs by the pulmonary route. In: *Modern pharmaceuticals* 2002 May 24 (pp. 739-767). CRC Press.
8. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. *Medical Devices: Evidence and Research*. 2015 Feb 12:131-9.
9. Borghardt JM, Weber B, Staab A, Kloft C. Pharmacometric models for characterizing the pharmacokinetics of orally inhaled drugs. *The AAPS journal*. 2015 Jul;17(4):853-70.
10. Lavorini F, Magnan A, Dubus JC, Voshaar T, Corbetta L, Broeders M, Dekhuijzen R, Sanchis J, Viejo JL, Barnes P, Corrigan C. Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD. *Respiratory medicine*. 2008 Apr 1;102(4):593-604.
11. Illum L. Nasal drug delivery: new developments and strategies. *Drug discovery today*. 2002 Dec 1;7(23):1184-9.
12. Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. *Drug delivery and translational research*. 2013 Feb;3(1):42-62.
13. Boei JJ, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DG, Lahoz A, Gmuender H, Vrieling H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. *Archives of toxicology*. 2017 May;91(5):2093-105.
14. Tai W, Kwok PC. Recent advances in drug delivery to the central nervous system by inhalation. *Expert Opinion on Drug Delivery*. 2022 May 4;19(5):539-58.
15. Agnihotri V, Agrawal Y, Goyal S, Sharma C, Ojha S. An update on advancements and challenges in inhalational drug delivery for pulmonary arterial hypertension. *Molecules*. 2022 May 29;27(11):3490.
16. Huang Q, Chen X, Yu S, Gong G, Shu H. Research progress in brain-targeted nasal drug delivery. *Frontiers in aging neuroscience*. 2024 Jan 17;15:1341295.
17. Pison U, Welte T, Giersig M, Groneberg DA. Nanomedicine for respiratory diseases. *European journal of pharmacology*. 2006 Mar 8;533(1-3):341-50.
18. Prajapati B, Paliwal H, Patel J. Pharmacokinetics of Nanoparticle Systems for Pulmonary Delivery. In: *Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems* 2022 Mar 8 (pp. 347-364). Cham: Springer International Publishing.
19. Habeichi NJ, Tannous C, Yabluchanskiy A, Altara R, Mericksay M, Booz GW, Zouein FA. Insights into the modulation of the interferon response and NAD⁺ in the context of COVID-19. *International Reviews of Immunology*. 2022 Jul 13;41(4):464-74.
20. Dakkah AN, Bataineh Y, Jaidi BA, Bayan MF, Nimer NA. Nanomedicines in Tuberculosis: Diagnosis, Therapy and Nanodrug Delivery. In: *Integrative Nanomedicine for New Therapies* 2020 Mar 3 (pp. 357-404). Cham: Springer International Publishing.
21. Mehta P, Haj-Ahmad R, Rasekh M, Arshad MS, Smith A, van der Merwe SM, Li X, Chang MW, Ahmad Z. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. *Drug discovery today*. 2017 Jan 1;22(1):157-65.
22. Dige S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal drug delivery by nanotechnology: advances in and challenges for Alzheimer's disease management. *Pharmaceutics*. 2023 Dec 29;16(1):58.
23. Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. *Cancer biology & medicine*. 2014 Mar 1;11(1):44-55.
24. Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. *Advanced drug delivery reviews*. 2014 Aug 30;75:32-52.
25. Kesten S, Israel E, Li G, Mitchell J, Wise R, Stern T. Development of a novel digital breath-activated inhaler: Initial particle size characterization and clinical testing. *Pulmonary Pharmacology & Therapeutics*. 2018 Dec 1;53:27-32.
26. Mangal S, Meiser F, Morton D, Larson I. Particle engineering of excipients for direct compression: understanding the role of material properties. *Current Pharmaceutical Design*. 2015 Dec 1;21(40):5877-89.
27. Yang MS, Kang JH, Kim DW, Park CW. Recent developments in dry powder inhalation (DPI) formulations for lung-targeted drug delivery. *Journal of Pharmaceutical Investigation*. 2024 Mar;54(2):113-30.
28. Yan X, Sha X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. *Pharmaceutics*. 2023 Oct 13;15(10):2457.
29. Cidem A, Bradbury P, Traini D, Ong HX. Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening. *Frontiers in bioengineering and biotechnology*. 2020 Oct 23;8:581995.
30. Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. *Advanced drug delivery reviews*. 2015 May 1;85:44-56.
31. Pepin XJ, Sanderson NJ, Blanazs A, Grover S, Ingallina TG, Mann JC. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part I. Mechanistic modelling of drug product dissolution to derive a P-PSD for PBPK model input. *European Journal of Pharmaceutics and Biopharmaceutics*. 2019 Sep 1;142:421-34.
32. Singh AV, Romeo A, Scott K, Wagener S, Leibrock L, Laux P, Luch A, Kerkar P, Balakrishnan S, Dakua SP, Park BW. Emerging technologies for in vitro inhalation toxicology. *Advanced Healthcare Materials*. 2021 Sep;10(18):2100633.
33. Manunta MD, Tagalakis AD, Attwood M, Aldossary AM, Barnes JL, Munye MM, Weng A, McAnulty RJ, Hart SL. Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic

strategy for cystic fibrosis. *Scientific reports*. 2017 Apr 6;7(1):700.

34. Fröhlich E, Mercuri A, Wu S, Salar-Behzadi S. Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. *Frontiers in pharmacology*. 2016 Jun 24;7:181.

35. Lavorini F, Fontana GA. Targeting drugs to the airways: the role of spacer devices. *Expert opinion on drug delivery*. 2009 Jan 1;6(1):91-102.

36. Pal R, Pandey P, Koli M, Srivastava K, Tiwari V, Gaur AK, Dutta P. The comprehensive review: Exploring future potential of nasopulmonary drug delivery systems for nasal route drug administration. *Journal of Drug Delivery and Therapeutics*. 2024 Mar 15;14(3):126-36.

37. Sahakipijarn S, Smyth HD, Miller DP, Weers JG. Post-inhalation cough with therapeutic aerosols: Formulation considerations. *Advanced Drug Delivery Reviews*. 2020 Jan 1;165:127-41.

38. Buya AB, Witika BA, Bapolisi AM, Mwila C, Mukubwa GK, Memvanga PB, Makoni PA, Nkanga CI. Application of lipid-based nanocarriers for antitubercular drug delivery: a review. *Pharmaceutics*. 2021 Nov 30;13(12):2041.

39. Patil PP, Pawar AP, Mahadik KR, Gaikwad VL. An overview of regulations for bioequivalence assessment of locally acting orally inhaled drug products for the United States, Europe, Canada, and India. *Expert Opinion on Drug Delivery*. 2021 Dec 2;18(12):1843-55.

40. Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-formulations for pulmonary delivery: Past, present, and future perspectives. *Pharmaceutics*. 2024 Jan 24;16(2):161.

41. Klijn SL, Hiligsmann M, Evers SM, Roman-Rodriguez M, van der Molen T, van Boven JF. Effectiveness and success factors of educational inhaler technique interventions in asthma & COPD patients: a systematic review. *NPJ primary care respiratory medicine*. 2017 Apr 13;27(1):24.

42. Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Hayes D, Black SM, Mansour HM. Pulmonary drug delivery. *InOrganelle and molecular targeting* 2021 Dec 27 (pp. 227-278). CRC Press.

43. Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review. *Journal of drug targeting*. 2015 Oct 21;23(9):775-88.

44. Ponkshe P, Thakkar RA, Mulay T, Joshi R, Javia A, Amrutiya J, Chougule M. Nasal and pulmonary drug delivery systems. *Vitr. Vivo Tools Drug Deliv. Res. Optim. Clin. Outcomes*. 2018 Jun 22;10:79-134.

45. Amegadzie JE, Gorgui J, Acheampong L, Gamble JM, Farrell J, Gao Z. Comparative safety and effectiveness of inhaled bronchodilators and corticosteroids for treating asthma-COPD overlap: a systematic review and meta-analysis. *Journal of Asthma*. 2021 Mar 4;58(3):344-59.

46. Fernández-García R, Fraguas-Sánchez AI. Nanomedicines for pulmonary drug delivery: Overcoming barriers in the treatment of respiratory infections and lung cancer. *Pharmaceutics*. 2024 Dec 11;16(12):1584.

47. Calzetta L, Pistocchini E, Gholamalishahi S, Grugni L, Cazzola M, Rogliani P. Novel drug discovery strategies for chronic obstructive pulmonary disease: the latest developments. *Expert Opinion on Drug Discovery*. 2025 May 4;20(5):683-92.

48. Newman SP. Drug delivery to the lungs: challenges and opportunities. *Therapeutic delivery*. 2017 Jul 1;8(8):647-61.

49. Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines targeting respiratory injuries for pulmonary disease management. *Advanced Functional Materials*. 2022 May;32(22):2112258.

50. Kumar R, Kumari N, Oupicky D. Spray Dried Particles for Inhalation. In *Organ Specific Drug Delivery and Targeting to the Lungs* 2022 Nov 23 (pp. 371-404). CRC Press.

51. Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang XJ. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. *Nanoscale*. 2013;5(18):8307-25.

52. Simões EA, DeVincenzo JP, Boeckh M, Bont L, Crowe Jr JE, Griffiths P, Hayden FG, Hodinka RL, Smyth RL, Spencer K, Thirstrup S. Challenges and opportunities in developing respiratory syncytial virus therapeutics. *The Journal of infectious diseases*. 2015 Mar 15;211(suppl_1):S1-20.

53. Tiwari A, Paul AR, Jain A, Saha SC. Design of Efficient Dry Powder Inhalers. In *Handbook of Lung Targeted Drug Delivery Systems* 2021 Oct 17 (pp. 129-153). CRC Press.

54. Thwala LN, Préat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. *Expert opinion on drug delivery*. 2017 Jan 2;14(1):23-36.

55. Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, Molina G, Diez L, Ramirez BI, Ramirez IO, Sánchez-Guirales SA. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. *Pharmaceutics*. 2023 Jan 17;15(2):313.

56. Das SS, Singh SK, Verma PR, Jha NK, Gupta PK, Dua K. Mitigating inflammation using advanced drug delivery by targeting TNF- α in lung diseases. *Future Medicinal Chemistry*. 2022 Jan 1;14(2):57-60.

57. Woodward IR, Fromen CA. Recent developments in aerosol pulmonary drug delivery: new technologies, new cargos, and new targets. *Annual Review of Biomedical Engineering*. 2024 Feb 29;26.

58. Vora LK, Gholap AD, Jetha K, Thakur RR, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. *Pharmaceutics*. 2023 Jul 10;15(7):1916.

Conflict of Interest: Nil**Source of support: Nil**