Original Research Article ## A study to evaluate the species and antibiotic sensitivity pattern of urinary tract pathogens. ## Archana¹, Dinesh Kumar¹, Ratnesh Kumar^{2*}, S N Singh³ ¹Tutor, Department of Microbiology, Patna Medical College and Hospital, Patna, Bihar, India ²Assistant Professor, Department of Microbiology, Patna Medical College and Hospital, Patna, Bihar, India ³Professor & HOD, Department of Microbiology, Patna Medical College and Hospital, Patna, Bihar, India Received: 04-11-2020 / Revised: 06-12-2020 / Accepted: 24-12-2020 ### **Abstract** Aim: To determine prevalence of uropathogenic bacteria and their antibiotic susceptibility pattern along with detection of extended spectrum β-lactamase (ESBL) production in Escherichia coli and Klebsiella spp. and methicillin resistance in Staphylococcus aureus (MRSA). Materials and Methods: 250 urine specimens received in microbiology lab from suspected UTI patients attending to the outpatient department were processed by standard techniques. ESBL production was determined by double disc synergy test and phenotypic confirmatory method. Results: Of 250 samples 20.8% showed significant bacteriuria, higher in females (61.5%). Escherichia coli was the predominant uropathogen (35%), followed by coagulase negative Staphylococcus (10.6%), Klebsiella spp. (10.2%). Gram negative bacilli showed maximum sensitivity to nitrofurantoin (68.9%), amikacin (62.2%) and gram positive cocci showed maximum sensitivity for nitrofurantoin (83.5%) followed by vancomycin (79.7%), gentamicin (75.9%). High resistance was seen against ampicillin, nalidixic acid, co-trimoxazole, cephalexin and norfloxacin. Prevalence of ESBL in Escherichia coli and Klebsiella spp. and MRSA was found to be 45.3%, 40% and 70% respectively. Conclusion: Escherichia coli was the predominant uropathogen for community acquired UTIs in Udaipur, Rajasthan. Uropathogens showed resistance to commonly used antibiotics with increasing trend of ESBL production and methicillin resistance. Nitrofurantoin, vancomycin should be used as empirical therapy. The susceptibility and resistance patterns of uropathogens should be considered before starting empirical treatment. Keywords: Antibiotic Susceptibility, Escherichia coli, ESBL, MRSA, Staphylococcus aureus Urinary Ttract This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provide original work is properly credited. ### Introduction Infection of urinary tract (UTI) is one of the most common diseases next to respiratory tract in community affecting peoples of all age worldwide. It is the most common type of body infection clinicians encounter in developing countries causing serious health problems to millions and displays an overall estimated incidence of 150 million UTIs/annum worldwide[1].Globally, UTIs cause not only a significant amount of morbidity, but also a significant financial burden[2].UTIs became quite *Correspondence ### Dr. Ratnesh Kumar Assistant Professor, Department of Microbiology, Patna Medical College and Hospital, Patna, Bihar, India. E-mail: drkrat@gmail.com alarming as isolated uropathogens exhibits high percentage of resistance to almost all antibiotics. Among several UTI implicated microorganisms, bacteria are the major causatives accounting for more than 95% cases[1]. Most infections are caused by retrograde ascent of bacteriafromthefaecal flora via the urethra to the bladder and kidney especially in the females who have a shorter and wider urethra [3]. The most common pathogenic organisms of UTI are Escherichia coli, Staphylococcus saprophyticus and less common organisms are Proteus,, Klebsiella, Pseudomonas, Enterococci and Candida albicans[4]. Although UTIs occurs in both males and females, clinical studies suggest higher prevalence of UTIs in females. Uncomplicated UTIs in healthy females have an incidence rate of 50/1000/year[5]. An estimated 50% of women experience at least one episode of UTI in their life time and between 20-40% women have recurrent episodes [6,7]. About 20% of all UTIs occur in males[8]. In almost all cases, there is a need to start treatment before the final microbiological results are available. Area specific monitoring studies which are aimed to gain knowledge about the type of pathogens which are responsible for UTIs and their sensitivity patterns may help the clinicians to choose the right empirical treatment. Knowledge on the antibiotic susceptibility patterns of the pathogens is important not only to provide an appropriate therapy, but also for the prevention of resistance amongst the microbes[9]. This study was done to obtain data on the sensitivity patterns of the major uropathogens from patients with community acquired UTIs, along with detection of ESBL production in Escherichia coli and Klebsiella spp. and methicillin resistance in Staphylococcus aureus. ### Material and methods ### Study design This was a single-center, prospective study was conducted at the Department of Microbiology, at Patna Medical College and Hospital, Patna from May 2020 October 2020. The present study was conducted on on all the pathogens isolated from 250 urine samples of suspected patients of UTIs who attend the outpatient Departments (OPDs) of our institute. The study was approved by the Institutional Research Committee. An informed and written consent was obtained from all the participating subjects before the commence-ment of the study. ## Urine sampling and processing Freshly voided mid-stream urine samples from the suspected UTI patients collected in sterilized containers were received in microbiology lab. Culture of un-centrifuged urine was done by semiquantitative method. It was inoculated in glucose broth, on nutrient agar, MacConkey agar and also on 5% blood agar plates if required. The inoculated plates were incubated aerobically at 37°C for 18-24 hours. After incubation plates were examined for pure growth and colony counts for determination of significant and insignificant bacteriuria. Identification of growth was done by colony morphology, grams staining and standard biochemical tests. A growth of ≥10⁵ colony forming units/ml was considered significant bacteriuria[10]. ## **Determination of antimicrobial susceptibility** Antimicrobial susceptibility of isolates was done by Kirby-Bauer disc diffusion method on Mueller Hinton agar plates by following CLSI guidelines. [11]. Separate set of antibiotics were used for gram positive and gram negative organisms. Following antibiotics were tested: ampicillin 10μg, amoxicillin 30μg, amoxiclav 30μg, oxacillin 1μg, carbenicillin 100μg, amikacin 30μg, gentamicin 30μg, cephalexin 30μg, cefotaxime 30μg, ceftazidime 30μg, ceftriaxone 30μg, nalidixic acid 30μg, ciprofloxacin 30μg, norfloxacin 10μg, vancomycin 30μg, novo-biocin 5μg, nitrofurantoin 300μg, tetracycline 30μg, doxycycline 30μg, cefoxitin 30μg, co- trimoxazole 1.25/23.75μg.The standard antibiotic discs (Himedia laboratories, Mumbai, India) available were used for this study. Control strains used were *E. coli* ATCC 25922 and *S. aureus* ATCC 25923. ## Determination of ESBL production in E. coli and klebsiella spp. Only those isolates which were resistant to one or more of the 3 third generation cephalosporins were selected for study and they were processed for ESBL production. ESBL detection was carried out by two procedures # Screening of ESBL producers- Double disc synergy test (DDST) DDST was performed as a standard disc diffusion assay on Mueller Hinton agar. Discs containing 30µg of ceftazidime, ceftriaxone and cefotaxime each were placed 15mm apart (centre to centre) around a disc amoxicillin containing plus clavulanic (augmentin 20µg $10\mu g$) and incubated. Enhancement of inhibition zone of any one of the test antibiotics towards augmentin disc was regarded as presumptive ESBL production and subjected to phenotypic confirmatory test[12]. ## Phenotypic confirmatory test This test was performed on Mueller Hinton agar by disc diffusion test as recommended by CLSI. Ceftazidime (30 µg) discs alone and in combination with clavulanic acid (ceftazidime + clavulanic Acid, 30/10 µg) disc, were applied at a distance of 30mm from centre to centre onto a plate of Mueller Hinton agar which was inoculated with the test strain and incubated. A greater than or equal to five mm increase in zone diameter of ceftazidime tested in combination with clavulanate versus its zone diameter when tested alone confirmed an ESBL producing organism. The control strains used were *Escherichia coli* ATCC 25922 as a non-ESBL producer and *Klebsiella pneumoniae* ATCC 700603 as an ESBL producer[11]. # Detection of Methcillin Resistant Staphylococcus aureus (MRSA) Detection of MRSA was done with Oxacillin (1µg) disc by disc diffusion test. Zone diameter of \leq 10 mm was considered as resistant, \geq 13 mm as susceptible whereas 11-12 mm was considered as intermediate[13]. ### **Results** During the study period 250 consecutive urine samples were processed from patients who presented in the outpatient department of Patna Medical College and Hospital, Patna from May 2020 October 2020. Of these 52(20.8%) showed significant growth of pathogen. Remaining 198 samples had either non significant growth or were sterile or contaminated. Table 1 outlines the demographic profile of patients with community acquired UTIs. Patients were between the age of 8 month to 86 year. Significant bacteriuria was reported in 32 (61.53%) females and 20 (38.46%) males. In females incidence was higher in the reproductive age group of 21-40 years, while in males in the age group of 61-80 years. (Table 1)Pathogens were isolated from 194(77.6%) urine samples. Among these samples gram negative bacilli were isolated from 120 (61.9%), gram positive cocci from 53 (27.3%) and in 21 (10.8%) urine samples both gram negative and gram positive cocci were present. Escherichia coli was the most frequently isolated urinary pathogen (35%), followed by Coagulase negative Staphylococcus (10.6%), Klebsiella spp. (10.2%) and Enterococcus faecalis (8.9%). The isolation rates of other organisms are shown in table 2.Antibiotic sensitivity pattern of gram negative bacilli revealed that maximum sensitivity was seen for nitrofurantoin (68.9%), followed by amikacin (62.2%), gentamycin (51.8%) and maximum resistance was seen against ampicillin(96.3%),cephalexin(92.1%),amoxicillin (90.2%) nalidixic acid (85.4%), ceftazidime (79.8%), cotrimoxazole (77.4%). (Table 3) Antibiotic sensitivity pattern of gram positive cocci revealed maximum sensitivity to nitrofurantoin (83.5%) followed by vancomycin (79.7%), gentamicin (75.9%), amikacin (73.4%). Maximum resistance was seen against nalidixic acid cotrimoxazole (84.8%), ceftazidime (84.8%) and ampicillin (79.7%).(Table 4) Out of 86 E. coli isolates, 39 were ESBL producers, while in 25 Klebsiella isolates 10 were ESBL producers. Prevalence of ESBL was higher in E. coli (45.3%), in comparison to Klebsiella spp. (40%). (Figure 1 & 2)Out of 20S. aureus isolates, 14 (70%) were MRSA. (Figure3) ### Discussion Effective management of patients suffering from bacterial UTIs commonly relays on the identification of organism that caused the disease and the selection an effective antibiotic of agent to the organism[14].This study provides current information regarding the etiologic agents that cause community-acquired UTIs in the outpatient setting and their antimicrobial susceptibility patterns. The result showed 20.8% patients with significant bacteriuria. This was in consistence with the findings of Smita et al[12] and Kasi Murugan et al[1]. The incidence of UTI with significant bacteriuria was higher in females (61.5%) than in males (38.5%) with male to female ratio 1:1.6. This was in consonance with other studies.[1,12,15]. Among the females the prevalence of significant bacteriuria was higher in the reproductive age group (28.12% in 21-30 year age group, 25% in 31-40 year age group and 15.6% in 41-50 year age group). This higher incidence rate is due to short female urethra and its proximity to anus[16].In males prevalence was higher in the elder age group (20% in 61-70 year age group and 25% in 71-80 year age group). This is probably because with the advancing age, the incidence of UTIs increases in men due to prostate enlargement and neurogenic bladder[12]. Similar results were obtained by Smita et al[12] and Rajak et al[17]. The majority of community acquired UTIs in and around Patna were due to gram negative bacilli. It was because gram negative bacilli have more virulence factors in comparison to gram positive cocci. These findings were consistent with findings of Smita et al,[12] Kasi Murugan et al[1]and Gaurav dalela et al[18] E. coli was the predominant pathogen being responsible for 35% of community acquired UTIs. This was in consistent with other studies. [12, 17,3] Enterobacteriaceae have several factors responsible for their attachment to the uroepithelium. These bacteria colonize the urogenital mucosa with adhesins, pili, fimbriae and P1-blood group phenotypic receptor[12]. In the present study Enterobacteriaceae bacteria accounted for 57.31% of all isolates, followed by gram positive cocci (32.11%) and non-fermenter gram negative bacteria (9.34%). The frequency was slightly varied from studies of Smita et al[12] and Rajak et al[17]Generally, uncomplicated UTIs are treated in the community with short courses of empirical therapy. In many cases, urine samples are only sent for microbiological evaluation following treatment failure, recurrent or relapsing infection. Although the levels of resistance we observed amongst community isolates may therefore overestimate the true rate of the community[18]Ampicillin, resistance in amoxicillin, amoxyclav and co-trimoxazole showed high levels of resistance in both gram negative bacilli and gram positive cocci. This could be attributed to wide usage for a variety of their indications[12].Our findings thus suggest that empirical treatment with these drugs should no longer appropriate in this region.Majority of isolates were found to be resistant to nalidixic acid, norfloxacin and ciprofloxacin. Fluoroquinolones have a wide variety of indications, permeate most body compartments and are ubiquitously prescribed, accounting for the emergence of their resistance. Norfloxacin, as it is an oral drug which is cost effective and has an easy dosing schedule, is commonly prescribed for the treatment of UTIs, in India as well as in other countries[12]. It showed a high resistance rate (73.1% in GNB and 79.7% in GPC) in our study, which reflects an increased quinolone resistance in our area, which was showed by other studies also. All gram positive and gram negative isolates also showed high level of resistance to all the cephalosporin tested (cephalexin, ceftazidime, ceftriaxone and cefotaxime), which indicates towards their inappropriate use and increased trends of β -lactamases production in the gentamicin) have shown very low resistance trends against both gram negative bacilli and gram positive cocci. Aminoglycosides being injectables are used (amikacin community. Aminogly cosides As nitrofurantoin has no role in the treatment of other infections, it can be administered orally and is highly concentrated in urine; it may therefore be the most appropriate drug for empirical treatment in uncomplicated UTI[12] Majority of gram positive cocci have shown sensitivity to vancomycin (79.7%). Doxycycline and tetracycline can also be used as oral therapy for UTIs due to gram positivecocci.In our study ESBL production was higher in E. coli in comparison to Klebsiella spp. The findings were in consonance with Babypadmini et al[19] and Akram et al[15]The prevalence of MRSA was 70% in our study, which was higher than that reported by K B Anand et al (56%) Gaurav dalela et al (42.4%) and B. Sasirekha (27.5%)[18,20,21]. The prolonged hospital stay, indiscriminate use of antibiotics, lack of awareness, receipt of antibiotics before coming to the hospital etc. are the possible predisposing factors of MRSA emergence[21].In the present study we observed a definitive increase in the antibiotic resistance in this region, which indicate that it is imperative to rationalize the use of antimicrobials and to use these conservatively. Our study confirms the global trend toward increased resistance to βlactam antibiotics, co-trimoxazole and fluoroquinolones. Moreover, the prevalence and antibiotic susceptibility pattern of ESBLproducers and MRSA differs geographically. Hence, such institutional studies will help in the formulation of antibiotic policy for a particular geographical area. restrictively in thecommunity-care settings and hence have shown better sensitivity rates[12]. Nitrofurantoin has shown the least resistance for both gram negative bacilli and gram positive cocci in our area. Our findings are in consonance with other studies which have also demonstrated nitrofurantoin as an appropriate agent for first line treatment of community acquired UTIs. [12, 17, 18] Table 1: Age and sex wise distribution of patients with significant bacteriuria (≥10⁵ CFU/ml) | Age group (in years) | Females No. (%) | Males No. (%) | |----------------------|-----------------|---------------| | 0-10 | 1 (3.1) | 1 (5) | | 11-20 | 3 (9.4) | 2 (10) | | 21-30 | 9 (28.1) | 1 (5) | | 31-40 | 8 (25) | 1 (5) | | 41-50 | 5 (15.6) | 3 (15) | | 51-60 | 4 (12.5) | 3 (15) | | 61-70 | 2 (6.3) | 4 (20) | | 71-80 | 0 (0) | 5 (25) | | 80 above | 0 (0) | 0 (0) | | Total | 32 (61.5) | 20 (38.5) | Table 2: Frequency of isolation of various urinary pathogens | Urinary pathogen isolated | Number (%) | |-----------------------------------|------------| | Escherichia coli | 86 (35) | | Coagulase negative Staphylococcus | 26 | | | (10.6) | | Klebsiella spp. | 25 | | | (10.2) | | Enterococcus faecalis | 22 (8.9) | | Pseudomonas spp. | 21 (8.5) | | Staphylococcus aureus | 20 (8.1) | | Citrobacter diversus | 12 (4.9) | | Staphylococcus saprophyticus | 11 (4.5) | | Enterobacter spp. | 10 (4.1) | | Citrobacter frundii | 6 (2.4) | | Candida other than albicans | 3 (1.2) | | Proteus mirabilis | 2 (0.8) | | Acinetobacter spp. | 2 (0.8) | | Total | 246 | | | (100) | Table 3: Antibiotic susceptibility pattern of total recovered gram negative bacilli (164) | Antibiotic | Sensitive (%) | Intermediate (%) | Resistant (%) | |--------------------------|---------------|------------------|---------------| | Amikacin | 102 (62.2) | 7 (4.3) | 55 (33.5) | | Gentamicin | 85 (51.8) | 9 (5.5) | 70 (42.7) | | Cephalexin | 12 (7.3) | 1 (0.6) | 151 (92.1) | | Cefotaxime | 32 (19.5) | 29 (17.7) | 103 (62.8) | | Ceftazidime | 27 (16.5) | 6 (3.7) | 131 (79.8) | | Ceftriaxone | 28 (17.1) | 14 (8.5) | 122 (74.4) | | Amoxycillin | 13 (7.9) | 3 (1.8) | 148 (90.2) | | Ampicillin | 4 (2.4) | 2 (1.2) | 158 (96.3) | | Amoxycillin/ Clavulanate | 15 (9.1) | 4 (2.4) | 145 (88.4) | | Ciprofloxacin | 49 (29.9) | 7 (4.3) | 108 (65.8) | | Norfloxacin | 38 (23.2) | 6 (3.7) | 120 (73.1) | | Co- Trimoxazole | 35 (21.3) | 2 (1.2) | 127 (77.4) | | Doxycycline | 37 (22.6) | 9 (5.5) | 118 (71.9) | | Nalidixic acid | 18 (10.9) | 6 (3.7) | 140 (85.4) | | Nitrofurantoin | 113 (68.9) | 10 (6.1) | 41 (25.0) | | Tetracycline | 40 (24.4) | 15 (9.1) | 109 (66.5) | | Carbenicillin | 47 (28.7) | 9 (5.5) | 108 (65.8) | | Cefoxitin | 81 (49.4) | 8 (4.9) | 75 (45.7) | e-ISSN: 2590-3241, p-ISSN: 2590-325X Table 4: Antibiotic susceptibility pattern of total recovered gram positive cocci (7) | Antibiotic | Sensitive | Intermediate (%) | Resistant (%) | | |-------------------------|-----------|------------------|---------------|--| | | (%) | | | | | Amikacin | 58 (73.4) | 4 (5.1) | 17 (21.5) | | | Gentamicin | 60 (75.9) | 3 (3.8) | 16 (20.3) | | | Cephalexin | 15 (18.9) | 5 (6.3) | 59 (74.7) | | | Cefotaxime | 28 (35.4) | 24 (30.4) | 27 (34.2) | | | Ceftazidime | 10 (12.7) | 2 (2.5) | 67 (84.8) | | | Ceftriaxone | 25 (31.6) | 20 (25.3) | 34 (43.0) | | | Amoxycillin | 32 (40.5) | 3 (3.8) | 44 (55.7) | | | Ampicillin | 16 (20.3) | 0 (0) | 63 (79.7) | | | Amoxycillin/Clavulanate | 30 (37.9) | 2 (2.5) | 47 (59.5) | | | Ciprofloxacin | 26 (32.9) | 8 (10.1) | 45 (56.9) | | | Norfloxacin | 11 (13.9) | 5 (6.3) | 63 (79.7) | | | Co- Trimoxazole | 11 (13.9) | 1 (1.3) | 67 (84.8) | | | Doxycycline | 42 (53.2) | 8 (10.1) | 29 (36.7) | | | Nalidixic acid | 4 (5.0) | 1 (1.3) | 74 (93.7) | | | Nitrofurantoin | 66 (83.5) | 1 (1.3) | 12 (15.2) | | | Tetracycline | 50 (63.3) | 3 (3.8) | 26 (32.9) | | | Oxacillin | 18 (22.8) | 2 (2.5) | 59 (74.7) | | | Vancomycin | 63 (79.7) | 3 (3.8) | 13 (16.5) | | Fig 1:Prevalence of ESBL production in E.coli Fig 2:Prevalence of ESBL production in Klebsiella spp Fig 3:Prevalence of methicillin resistant S.aureus(MRSA) ### Conclusion Higher prevalence of community acquired UTIs was seen in adult females. *E. coli* was the predominant pathogen responsible for community acquired UTIs in this region. It is quite alarming that almost all isolates included in this study were found resistant to 3 or more antibiotics. Both gram negative bacilli and gram positive cocci showed high level of resistance against penicillins, quinolones and fluoroquinolones, co-trimoxazole and cephalosporins. So these drugs should no longer be used in the treatment of community acquired UTIs. Among the oral antibiotics, nitrofurantoin was found to be most effective showing least resistance, suggesting that it could be used as empiric monotherapy for uncomplicated UTIs in this region. Our findings suggest presence of ESBL and MRSA in the community; therefore, monitoring of antibiotic susceptibility of bacterial isolates in the community should be mandatory. The antibiotic susceptibility and resistance patterns of urinary pathogens should be considered before starting empirical treatment for UTI. #### References 1. Kasi M, Savitha T, Vasanthi S. Retrospective study of antibiotic resistance among _____ - uropathogens from rural teaching hospital, Tamilnadu, India. Asian Pac J Trop Dis 2012; 2(5):375-380. - 2. Andrew JR, David MG, Margaret M, Ephraim OT, Mohan N, Andrew PS, et al. MicrobiologyofurinarytractinfectionsinGaboron e, Botswana. PLoS ONE 2013; 8(3): e57776. - 3. Manikandan S, Ganesapandian S, Singh M, Kumaraguru AK. Antimicrobial susceptibility pattern of urinary tract infection causing human pathogenic bacteria. Asian J Med Sci 2011; 3(2): 56-60. - 4. Salek, SB, Infective syndrome in medical microbiology, 4th edition, 1992, pp.740. - Backer D, Christiaens T, Heytens S, Sutter A, Stobberingh EE, Verschenraegen G. Evolution of bacterial susceptibility pattern of Escherichia coli in uncomplicated urinary tract infections in a country with high antibiotic consumption: A comparison of two surveys with 10 year intervals. J Antimicrob Chemother 2008; 62: 364-8. - Rock W, Colodner R, Chazan B, Elias M, Raz R. Ten years surveillance of antimicrobial susceptibility of community acquired *Escerichia* coli and other uropathogens in northern Israel (1995-2005). Israel Med Assoc J 2007; 9:803-5. - Vasquez Y, Hand WL. Antibiotic susceptibility patterns of community acquired urinary tract infection isolates from female patients on the US(Texas)-Mexico Border. J Appl Res 2004; 4:321-6. - Griebling TL. Urinary tract infection in men. In: Litwin MS, Saigal CS, editors. Urologic diseases in America DHHS, PHS, NIH, NIDDK. Washington, DC: GPO; 2007. NIH Publication 07-5512:621-45. - 9. Khameneh ZR, Afshar AT. Antimicrobial susceptibility pattern of urinary tract pathogens. Saudi J Kidney Dis Transpl 2009; 20:251-53. - 10. Syed MA, Sumita R, Jasmin PT and Shakir VPA. Detection of ESBL among the Gram negative uropathogens and their antibiotic resistance pattern in a rural medical college hospital North Kerala, India. Int J Curr Microbiol App Sci 2014; 3(2): 561-567. - 11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twentieth informational - supplement ed. CLSI document M100-S20. Wayne, PA: CLSI;2010. - Sood S, Gupta R. Antibiotic resistance pattern of community acquired uropathogens at a tertiary care hospital in Jaipur, Rajasthan. Indian J Commun Med 2012; 37:39-44.microbiology. 11th ed. Mosby publication; 2002. Chapter 60, pp.926-938. - 13. Choudhury R, Panda S, Singh DV. Emergence and dissemination of antibiotic resstance: A global problem. Indian J Med Microb 2012; 30(4):384-90. - 14. Water G, Harrison B, and Kunin G. Urinary tract infection. N Eng Med J 1996;248-250. - 15. Akram M, Shahid M, Khan AU. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann Clinical Microb Antimicrob 2007,6:4. - 16. Betty AF, Daniel FS, Alice SW. Infections of urinary tract. In: Bailey & Scott's diagnostic care hospital. Indian J Med Microb 2004; 22(3): 172-174. - 17. Shamataj KR, Vishwanath G. Bacteriology of urinary tract infection and antibiotic susceptibility pattern in a tertiary care hospital in south India. International J of Med Sci Public Health 2012; 1: 109-112. - 18. Dalela G, Gupta S, Jain DK, Mehta P. Antibiotic resistance pattern in uropathogens at a tertiary care hospital at Jhalawar with special reference to ESBL, AmpC β-Lactamase and MRSA production. J Clin Diagn Res 2012 (Suppl 2); 6(4):645-651. - 19. Anand KB, Agrawal P, Kumar S, Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J Med Microb 2009; 27(1):27-9. - Sasirekha B. Prevalence of ESBL, AmpC betalactamases and MRSA among uropathogens and its antibiogram. EXCLI Journal 2013; 12: 81-88 - 21. Rajaduraipandi K, Mani KR, Panneerselvam K, Mani M, Bhaskar M, Manikandan P. Prevalence and Antimicrobial Susceptibility Pattern of Methicillin Resistant Staphyl ococcus aureus: A Multicentre Study. Indian J Med Microb 2006; 24(1):34-8. Conflict of Interest: Nil Source of support:Nil